Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}-3x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{1}{2}\times 4}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -3 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{1}{2}\times 4}}{2\times \frac{1}{2}}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-2\times 4}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-3\right)±\sqrt{9-8}}{2\times \frac{1}{2}}
Multiply -2 times 4.
x=\frac{-\left(-3\right)±\sqrt{1}}{2\times \frac{1}{2}}
Add 9 to -8.
x=\frac{-\left(-3\right)±1}{2\times \frac{1}{2}}
Take the square root of 1.
x=\frac{3±1}{2\times \frac{1}{2}}
The opposite of -3 is 3.
x=\frac{3±1}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{4}{1}
Now solve the equation x=\frac{3±1}{1} when ± is plus. Add 3 to 1.
x=4
Divide 4 by 1.
x=\frac{2}{1}
Now solve the equation x=\frac{3±1}{1} when ± is minus. Subtract 1 from 3.
x=2
Divide 2 by 1.
x=4 x=2
The equation is now solved.
\frac{1}{2}x^{2}-3x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}-3x+4-4=-4
Subtract 4 from both sides of the equation.
\frac{1}{2}x^{2}-3x=-4
Subtracting 4 from itself leaves 0.
\frac{\frac{1}{2}x^{2}-3x}{\frac{1}{2}}=-\frac{4}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{3}{\frac{1}{2}}\right)x=-\frac{4}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-6x=-\frac{4}{\frac{1}{2}}
Divide -3 by \frac{1}{2} by multiplying -3 by the reciprocal of \frac{1}{2}.
x^{2}-6x=-8
Divide -4 by \frac{1}{2} by multiplying -4 by the reciprocal of \frac{1}{2}.
x^{2}-6x+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-8+9
Square -3.
x^{2}-6x+9=1
Add -8 to 9.
\left(x-3\right)^{2}=1
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-3=1 x-3=-1
Simplify.
x=4 x=2
Add 3 to both sides of the equation.