Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}-2x+\frac{1}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{2}\times \frac{1}{3}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -2 for b, and \frac{1}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{2}\times \frac{1}{3}}}{2\times \frac{1}{2}}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-2\times \frac{1}{3}}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-2\right)±\sqrt{4-\frac{2}{3}}}{2\times \frac{1}{2}}
Multiply -2 times \frac{1}{3}.
x=\frac{-\left(-2\right)±\sqrt{\frac{10}{3}}}{2\times \frac{1}{2}}
Add 4 to -\frac{2}{3}.
x=\frac{-\left(-2\right)±\frac{\sqrt{30}}{3}}{2\times \frac{1}{2}}
Take the square root of \frac{10}{3}.
x=\frac{2±\frac{\sqrt{30}}{3}}{2\times \frac{1}{2}}
The opposite of -2 is 2.
x=\frac{2±\frac{\sqrt{30}}{3}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\frac{\sqrt{30}}{3}+2}{1}
Now solve the equation x=\frac{2±\frac{\sqrt{30}}{3}}{1} when ± is plus. Add 2 to \frac{\sqrt{30}}{3}.
x=\frac{\sqrt{30}}{3}+2
Divide 2+\frac{\sqrt{30}}{3} by 1.
x=\frac{-\frac{\sqrt{30}}{3}+2}{1}
Now solve the equation x=\frac{2±\frac{\sqrt{30}}{3}}{1} when ± is minus. Subtract \frac{\sqrt{30}}{3} from 2.
x=-\frac{\sqrt{30}}{3}+2
Divide 2-\frac{\sqrt{30}}{3} by 1.
x=\frac{\sqrt{30}}{3}+2 x=-\frac{\sqrt{30}}{3}+2
The equation is now solved.
\frac{1}{2}x^{2}-2x+\frac{1}{3}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}-2x+\frac{1}{3}-\frac{1}{3}=-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
\frac{1}{2}x^{2}-2x=-\frac{1}{3}
Subtracting \frac{1}{3} from itself leaves 0.
\frac{\frac{1}{2}x^{2}-2x}{\frac{1}{2}}=-\frac{\frac{1}{3}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{2}{\frac{1}{2}}\right)x=-\frac{\frac{1}{3}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-4x=-\frac{\frac{1}{3}}{\frac{1}{2}}
Divide -2 by \frac{1}{2} by multiplying -2 by the reciprocal of \frac{1}{2}.
x^{2}-4x=-\frac{2}{3}
Divide -\frac{1}{3} by \frac{1}{2} by multiplying -\frac{1}{3} by the reciprocal of \frac{1}{2}.
x^{2}-4x+\left(-2\right)^{2}=-\frac{2}{3}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{2}{3}+4
Square -2.
x^{2}-4x+4=\frac{10}{3}
Add -\frac{2}{3} to 4.
\left(x-2\right)^{2}=\frac{10}{3}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{10}{3}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{30}}{3} x-2=-\frac{\sqrt{30}}{3}
Simplify.
x=\frac{\sqrt{30}}{3}+2 x=-\frac{\sqrt{30}}{3}+2
Add 2 to both sides of the equation.