Solve for x (complex solution)
x=\frac{5+\sqrt{231}i}{8}\approx 0.625+1.899835519i
x=\frac{-\sqrt{231}i+5}{8}\approx 0.625-1.899835519i
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 1 } { 2 } x ^ { 2 } - \frac { 5 } { 8 } x + 2 = 0
Share
Copied to clipboard
\frac{1}{2}x^{2}-\frac{5}{8}x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\left(-\frac{5}{8}\right)^{2}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -\frac{5}{8} for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-2\times 2}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-4}}{2\times \frac{1}{2}}
Multiply -2 times 2.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{-\frac{231}{64}}}{2\times \frac{1}{2}}
Add \frac{25}{64} to -4.
x=\frac{-\left(-\frac{5}{8}\right)±\frac{\sqrt{231}i}{8}}{2\times \frac{1}{2}}
Take the square root of -\frac{231}{64}.
x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{2\times \frac{1}{2}}
The opposite of -\frac{5}{8} is \frac{5}{8}.
x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{5+\sqrt{231}i}{8}
Now solve the equation x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{1} when ± is plus. Add \frac{5}{8} to \frac{i\sqrt{231}}{8}.
x=\frac{-\sqrt{231}i+5}{8}
Now solve the equation x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{1} when ± is minus. Subtract \frac{i\sqrt{231}}{8} from \frac{5}{8}.
x=\frac{5+\sqrt{231}i}{8} x=\frac{-\sqrt{231}i+5}{8}
The equation is now solved.
\frac{1}{2}x^{2}-\frac{5}{8}x+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}-\frac{5}{8}x+2-2=-2
Subtract 2 from both sides of the equation.
\frac{1}{2}x^{2}-\frac{5}{8}x=-2
Subtracting 2 from itself leaves 0.
\frac{\frac{1}{2}x^{2}-\frac{5}{8}x}{\frac{1}{2}}=-\frac{2}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{\frac{5}{8}}{\frac{1}{2}}\right)x=-\frac{2}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-\frac{5}{4}x=-\frac{2}{\frac{1}{2}}
Divide -\frac{5}{8} by \frac{1}{2} by multiplying -\frac{5}{8} by the reciprocal of \frac{1}{2}.
x^{2}-\frac{5}{4}x=-4
Divide -2 by \frac{1}{2} by multiplying -2 by the reciprocal of \frac{1}{2}.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=-4+\left(-\frac{5}{8}\right)^{2}
Divide -\frac{5}{4}, the coefficient of the x term, by 2 to get -\frac{5}{8}. Then add the square of -\frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-4+\frac{25}{64}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-\frac{231}{64}
Add -4 to \frac{25}{64}.
\left(x-\frac{5}{8}\right)^{2}=-\frac{231}{64}
Factor x^{2}-\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{-\frac{231}{64}}
Take the square root of both sides of the equation.
x-\frac{5}{8}=\frac{\sqrt{231}i}{8} x-\frac{5}{8}=-\frac{\sqrt{231}i}{8}
Simplify.
x=\frac{5+\sqrt{231}i}{8} x=\frac{-\sqrt{231}i+5}{8}
Add \frac{5}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}