Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}-\frac{1}{2}x=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{2}x^{2}-\frac{1}{2}x-6=6-6
Subtract 6 from both sides of the equation.
\frac{1}{2}x^{2}-\frac{1}{2}x-6=0
Subtracting 6 from itself leaves 0.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{1}{2}\left(-6\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -\frac{1}{2} for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{1}{2}\left(-6\right)}}{2\times \frac{1}{2}}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-2\left(-6\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+12}}{2\times \frac{1}{2}}
Multiply -2 times -6.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{49}{4}}}{2\times \frac{1}{2}}
Add \frac{1}{4} to 12.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{7}{2}}{2\times \frac{1}{2}}
Take the square root of \frac{49}{4}.
x=\frac{\frac{1}{2}±\frac{7}{2}}{2\times \frac{1}{2}}
The opposite of -\frac{1}{2} is \frac{1}{2}.
x=\frac{\frac{1}{2}±\frac{7}{2}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{4}{1}
Now solve the equation x=\frac{\frac{1}{2}±\frac{7}{2}}{1} when ± is plus. Add \frac{1}{2} to \frac{7}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=4
Divide 4 by 1.
x=-\frac{3}{1}
Now solve the equation x=\frac{\frac{1}{2}±\frac{7}{2}}{1} when ± is minus. Subtract \frac{7}{2} from \frac{1}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-3
Divide -3 by 1.
x=4 x=-3
The equation is now solved.
\frac{1}{2}x^{2}-\frac{1}{2}x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}-\frac{1}{2}x}{\frac{1}{2}}=\frac{6}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{\frac{1}{2}}{\frac{1}{2}}\right)x=\frac{6}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-x=\frac{6}{\frac{1}{2}}
Divide -\frac{1}{2} by \frac{1}{2} by multiplying -\frac{1}{2} by the reciprocal of \frac{1}{2}.
x^{2}-x=12
Divide 6 by \frac{1}{2} by multiplying 6 by the reciprocal of \frac{1}{2}.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=12+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=12+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{49}{4}
Add 12 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{7}{2} x-\frac{1}{2}=-\frac{7}{2}
Simplify.
x=4 x=-3
Add \frac{1}{2} to both sides of the equation.