Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{1}{2}x^{2}\right)^{2}=\left(\sqrt{8-x^{2}}\right)^{2}
Square both sides of the equation.
\left(\frac{1}{2}\right)^{2}\left(x^{2}\right)^{2}=\left(\sqrt{8-x^{2}}\right)^{2}
Expand \left(\frac{1}{2}x^{2}\right)^{2}.
\left(\frac{1}{2}\right)^{2}x^{4}=\left(\sqrt{8-x^{2}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{4}x^{4}=\left(\sqrt{8-x^{2}}\right)^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{4}=8-x^{2}
Calculate \sqrt{8-x^{2}} to the power of 2 and get 8-x^{2}.
\frac{1}{4}x^{4}-8=-x^{2}
Subtract 8 from both sides.
\frac{1}{4}x^{4}-8+x^{2}=0
Add x^{2} to both sides.
\frac{1}{4}t^{2}+t-8=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{4}\left(-8\right)}}{\frac{1}{4}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{1}{4} for a, 1 for b, and -8 for c in the quadratic formula.
t=\frac{-1±3}{\frac{1}{2}}
Do the calculations.
t=4 t=-8
Solve the equation t=\frac{-1±3}{\frac{1}{2}} when ± is plus and when ± is minus.
x=2 x=-2
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
\frac{1}{2}\times 2^{2}=\sqrt{8-2^{2}}
Substitute 2 for x in the equation \frac{1}{2}x^{2}=\sqrt{8-x^{2}}.
2=2
Simplify. The value x=2 satisfies the equation.
\frac{1}{2}\left(-2\right)^{2}=\sqrt{8-\left(-2\right)^{2}}
Substitute -2 for x in the equation \frac{1}{2}x^{2}=\sqrt{8-x^{2}}.
2=2
Simplify. The value x=-2 satisfies the equation.
x=2 x=-2
List all solutions of \frac{x^{2}}{2}=\sqrt{8-x^{2}}.