Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\frac{9}{32}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x^{2}=\frac{9}{16}
Multiply \frac{9}{32} and 2 to get \frac{9}{16}.
x^{2}-\frac{9}{16}=0
Subtract \frac{9}{16} from both sides.
16x^{2}-9=0
Multiply both sides by 16.
\left(4x-3\right)\left(4x+3\right)=0
Consider 16x^{2}-9. Rewrite 16x^{2}-9 as \left(4x\right)^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{3}{4} x=-\frac{3}{4}
To find equation solutions, solve 4x-3=0 and 4x+3=0.
x^{2}=\frac{9}{32}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x^{2}=\frac{9}{16}
Multiply \frac{9}{32} and 2 to get \frac{9}{16}.
x=\frac{3}{4} x=-\frac{3}{4}
Take the square root of both sides of the equation.
x^{2}=\frac{9}{32}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x^{2}=\frac{9}{16}
Multiply \frac{9}{32} and 2 to get \frac{9}{16}.
x^{2}-\frac{9}{16}=0
Subtract \frac{9}{16} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{9}{16}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{9}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{9}{16}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{9}{4}}}{2}
Multiply -4 times -\frac{9}{16}.
x=\frac{0±\frac{3}{2}}{2}
Take the square root of \frac{9}{4}.
x=\frac{3}{4}
Now solve the equation x=\frac{0±\frac{3}{2}}{2} when ± is plus.
x=-\frac{3}{4}
Now solve the equation x=\frac{0±\frac{3}{2}}{2} when ± is minus.
x=\frac{3}{4} x=-\frac{3}{4}
The equation is now solved.