Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}=4\left(x-1\right)+\left(x-3\right)\left(x+4\right)
Multiply both sides of the equation by 12, the least common multiple of 2,3,12.
6x^{2}=4x-4+\left(x-3\right)\left(x+4\right)
Use the distributive property to multiply 4 by x-1.
6x^{2}=4x-4+x^{2}+x-12
Use the distributive property to multiply x-3 by x+4 and combine like terms.
6x^{2}=5x-4+x^{2}-12
Combine 4x and x to get 5x.
6x^{2}=5x-16+x^{2}
Subtract 12 from -4 to get -16.
6x^{2}-5x=-16+x^{2}
Subtract 5x from both sides.
6x^{2}-5x-\left(-16\right)=x^{2}
Subtract -16 from both sides.
6x^{2}-5x+16=x^{2}
The opposite of -16 is 16.
6x^{2}-5x+16-x^{2}=0
Subtract x^{2} from both sides.
5x^{2}-5x+16=0
Combine 6x^{2} and -x^{2} to get 5x^{2}.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 5\times 16}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -5 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 5\times 16}}{2\times 5}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-20\times 16}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-5\right)±\sqrt{25-320}}{2\times 5}
Multiply -20 times 16.
x=\frac{-\left(-5\right)±\sqrt{-295}}{2\times 5}
Add 25 to -320.
x=\frac{-\left(-5\right)±\sqrt{295}i}{2\times 5}
Take the square root of -295.
x=\frac{5±\sqrt{295}i}{2\times 5}
The opposite of -5 is 5.
x=\frac{5±\sqrt{295}i}{10}
Multiply 2 times 5.
x=\frac{5+\sqrt{295}i}{10}
Now solve the equation x=\frac{5±\sqrt{295}i}{10} when ± is plus. Add 5 to i\sqrt{295}.
x=\frac{\sqrt{295}i}{10}+\frac{1}{2}
Divide 5+i\sqrt{295} by 10.
x=\frac{-\sqrt{295}i+5}{10}
Now solve the equation x=\frac{5±\sqrt{295}i}{10} when ± is minus. Subtract i\sqrt{295} from 5.
x=-\frac{\sqrt{295}i}{10}+\frac{1}{2}
Divide 5-i\sqrt{295} by 10.
x=\frac{\sqrt{295}i}{10}+\frac{1}{2} x=-\frac{\sqrt{295}i}{10}+\frac{1}{2}
The equation is now solved.
6x^{2}=4\left(x-1\right)+\left(x-3\right)\left(x+4\right)
Multiply both sides of the equation by 12, the least common multiple of 2,3,12.
6x^{2}=4x-4+\left(x-3\right)\left(x+4\right)
Use the distributive property to multiply 4 by x-1.
6x^{2}=4x-4+x^{2}+x-12
Use the distributive property to multiply x-3 by x+4 and combine like terms.
6x^{2}=5x-4+x^{2}-12
Combine 4x and x to get 5x.
6x^{2}=5x-16+x^{2}
Subtract 12 from -4 to get -16.
6x^{2}-5x=-16+x^{2}
Subtract 5x from both sides.
6x^{2}-5x-x^{2}=-16
Subtract x^{2} from both sides.
5x^{2}-5x=-16
Combine 6x^{2} and -x^{2} to get 5x^{2}.
\frac{5x^{2}-5x}{5}=-\frac{16}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{5}{5}\right)x=-\frac{16}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-x=-\frac{16}{5}
Divide -5 by 5.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{16}{5}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{16}{5}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{59}{20}
Add -\frac{16}{5} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=-\frac{59}{20}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{59}{20}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{295}i}{10} x-\frac{1}{2}=-\frac{\sqrt{295}i}{10}
Simplify.
x=\frac{\sqrt{295}i}{10}+\frac{1}{2} x=-\frac{\sqrt{295}i}{10}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.