Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}+x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{2}\left(-5\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 1 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{1}{2}\left(-5\right)}}{2\times \frac{1}{2}}
Square 1.
x=\frac{-1±\sqrt{1-2\left(-5\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-1±\sqrt{1+10}}{2\times \frac{1}{2}}
Multiply -2 times -5.
x=\frac{-1±\sqrt{11}}{2\times \frac{1}{2}}
Add 1 to 10.
x=\frac{-1±\sqrt{11}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{11}-1}{1}
Now solve the equation x=\frac{-1±\sqrt{11}}{1} when ± is plus. Add -1 to \sqrt{11}.
x=\sqrt{11}-1
Divide -1+\sqrt{11} by 1.
x=\frac{-\sqrt{11}-1}{1}
Now solve the equation x=\frac{-1±\sqrt{11}}{1} when ± is minus. Subtract \sqrt{11} from -1.
x=-\sqrt{11}-1
Divide -1-\sqrt{11} by 1.
x=\sqrt{11}-1 x=-\sqrt{11}-1
The equation is now solved.
\frac{1}{2}x^{2}+x-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}+x-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
\frac{1}{2}x^{2}+x=-\left(-5\right)
Subtracting -5 from itself leaves 0.
\frac{1}{2}x^{2}+x=5
Subtract -5 from 0.
\frac{\frac{1}{2}x^{2}+x}{\frac{1}{2}}=\frac{5}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{1}{\frac{1}{2}}x=\frac{5}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+2x=\frac{5}{\frac{1}{2}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
x^{2}+2x=10
Divide 5 by \frac{1}{2} by multiplying 5 by the reciprocal of \frac{1}{2}.
x^{2}+2x+1^{2}=10+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=10+1
Square 1.
x^{2}+2x+1=11
Add 10 to 1.
\left(x+1\right)^{2}=11
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{11}
Take the square root of both sides of the equation.
x+1=\sqrt{11} x+1=-\sqrt{11}
Simplify.
x=\sqrt{11}-1 x=-\sqrt{11}-1
Subtract 1 from both sides of the equation.
\frac{1}{2}x^{2}+x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{2}\left(-5\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 1 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{1}{2}\left(-5\right)}}{2\times \frac{1}{2}}
Square 1.
x=\frac{-1±\sqrt{1-2\left(-5\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-1±\sqrt{1+10}}{2\times \frac{1}{2}}
Multiply -2 times -5.
x=\frac{-1±\sqrt{11}}{2\times \frac{1}{2}}
Add 1 to 10.
x=\frac{-1±\sqrt{11}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{11}-1}{1}
Now solve the equation x=\frac{-1±\sqrt{11}}{1} when ± is plus. Add -1 to \sqrt{11}.
x=\sqrt{11}-1
Divide -1+\sqrt{11} by 1.
x=\frac{-\sqrt{11}-1}{1}
Now solve the equation x=\frac{-1±\sqrt{11}}{1} when ± is minus. Subtract \sqrt{11} from -1.
x=-\sqrt{11}-1
Divide -1-\sqrt{11} by 1.
x=\sqrt{11}-1 x=-\sqrt{11}-1
The equation is now solved.
\frac{1}{2}x^{2}+x-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}+x-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
\frac{1}{2}x^{2}+x=-\left(-5\right)
Subtracting -5 from itself leaves 0.
\frac{1}{2}x^{2}+x=5
Subtract -5 from 0.
\frac{\frac{1}{2}x^{2}+x}{\frac{1}{2}}=\frac{5}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{1}{\frac{1}{2}}x=\frac{5}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+2x=\frac{5}{\frac{1}{2}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
x^{2}+2x=10
Divide 5 by \frac{1}{2} by multiplying 5 by the reciprocal of \frac{1}{2}.
x^{2}+2x+1^{2}=10+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=10+1
Square 1.
x^{2}+2x+1=11
Add 10 to 1.
\left(x+1\right)^{2}=11
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{11}
Take the square root of both sides of the equation.
x+1=\sqrt{11} x+1=-\sqrt{11}
Simplify.
x=\sqrt{11}-1 x=-\sqrt{11}-1
Subtract 1 from both sides of the equation.