Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}+x-12=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{2}x^{2}+x-12-6=6-6
Subtract 6 from both sides of the equation.
\frac{1}{2}x^{2}+x-12-6=0
Subtracting 6 from itself leaves 0.
\frac{1}{2}x^{2}+x-18=0
Subtract 6 from -12.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{2}\left(-18\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 1 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{1}{2}\left(-18\right)}}{2\times \frac{1}{2}}
Square 1.
x=\frac{-1±\sqrt{1-2\left(-18\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-1±\sqrt{1+36}}{2\times \frac{1}{2}}
Multiply -2 times -18.
x=\frac{-1±\sqrt{37}}{2\times \frac{1}{2}}
Add 1 to 36.
x=\frac{-1±\sqrt{37}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{37}-1}{1}
Now solve the equation x=\frac{-1±\sqrt{37}}{1} when ± is plus. Add -1 to \sqrt{37}.
x=\sqrt{37}-1
Divide -1+\sqrt{37} by 1.
x=\frac{-\sqrt{37}-1}{1}
Now solve the equation x=\frac{-1±\sqrt{37}}{1} when ± is minus. Subtract \sqrt{37} from -1.
x=-\sqrt{37}-1
Divide -1-\sqrt{37} by 1.
x=\sqrt{37}-1 x=-\sqrt{37}-1
The equation is now solved.
\frac{1}{2}x^{2}+x-12=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}+x-12-\left(-12\right)=6-\left(-12\right)
Add 12 to both sides of the equation.
\frac{1}{2}x^{2}+x=6-\left(-12\right)
Subtracting -12 from itself leaves 0.
\frac{1}{2}x^{2}+x=18
Subtract -12 from 6.
\frac{\frac{1}{2}x^{2}+x}{\frac{1}{2}}=\frac{18}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{1}{\frac{1}{2}}x=\frac{18}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+2x=\frac{18}{\frac{1}{2}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
x^{2}+2x=36
Divide 18 by \frac{1}{2} by multiplying 18 by the reciprocal of \frac{1}{2}.
x^{2}+2x+1^{2}=36+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=36+1
Square 1.
x^{2}+2x+1=37
Add 36 to 1.
\left(x+1\right)^{2}=37
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{37}
Take the square root of both sides of the equation.
x+1=\sqrt{37} x+1=-\sqrt{37}
Simplify.
x=\sqrt{37}-1 x=-\sqrt{37}-1
Subtract 1 from both sides of the equation.
\frac{1}{2}x^{2}+x-12=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{2}x^{2}+x-12-6=6-6
Subtract 6 from both sides of the equation.
\frac{1}{2}x^{2}+x-12-6=0
Subtracting 6 from itself leaves 0.
\frac{1}{2}x^{2}+x-18=0
Subtract 6 from -12.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{2}\left(-18\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 1 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{1}{2}\left(-18\right)}}{2\times \frac{1}{2}}
Square 1.
x=\frac{-1±\sqrt{1-2\left(-18\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-1±\sqrt{1+36}}{2\times \frac{1}{2}}
Multiply -2 times -18.
x=\frac{-1±\sqrt{37}}{2\times \frac{1}{2}}
Add 1 to 36.
x=\frac{-1±\sqrt{37}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{37}-1}{1}
Now solve the equation x=\frac{-1±\sqrt{37}}{1} when ± is plus. Add -1 to \sqrt{37}.
x=\sqrt{37}-1
Divide -1+\sqrt{37} by 1.
x=\frac{-\sqrt{37}-1}{1}
Now solve the equation x=\frac{-1±\sqrt{37}}{1} when ± is minus. Subtract \sqrt{37} from -1.
x=-\sqrt{37}-1
Divide -1-\sqrt{37} by 1.
x=\sqrt{37}-1 x=-\sqrt{37}-1
The equation is now solved.
\frac{1}{2}x^{2}+x-12=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}+x-12-\left(-12\right)=6-\left(-12\right)
Add 12 to both sides of the equation.
\frac{1}{2}x^{2}+x=6-\left(-12\right)
Subtracting -12 from itself leaves 0.
\frac{1}{2}x^{2}+x=18
Subtract -12 from 6.
\frac{\frac{1}{2}x^{2}+x}{\frac{1}{2}}=\frac{18}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{1}{\frac{1}{2}}x=\frac{18}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+2x=\frac{18}{\frac{1}{2}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
x^{2}+2x=36
Divide 18 by \frac{1}{2} by multiplying 18 by the reciprocal of \frac{1}{2}.
x^{2}+2x+1^{2}=36+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=36+1
Square 1.
x^{2}+2x+1=37
Add 36 to 1.
\left(x+1\right)^{2}=37
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{37}
Take the square root of both sides of the equation.
x+1=\sqrt{37} x+1=-\sqrt{37}
Simplify.
x=\sqrt{37}-1 x=-\sqrt{37}-1
Subtract 1 from both sides of the equation.