Solve for x (complex solution)
x=\sqrt{5}-1\approx 1.236067977
x=-\left(\sqrt{5}+1\right)\approx -3.236067977
Solve for x
x=\sqrt{5}-1\approx 1.236067977
x=-\sqrt{5}-1\approx -3.236067977
Graph
Share
Copied to clipboard
\frac{1}{2}x^{2}+x=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{2}x^{2}+x-2=2-2
Subtract 2 from both sides of the equation.
\frac{1}{2}x^{2}+x-2=0
Subtracting 2 from itself leaves 0.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 1 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
Square 1.
x=\frac{-1±\sqrt{1-2\left(-2\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-1±\sqrt{1+4}}{2\times \frac{1}{2}}
Multiply -2 times -2.
x=\frac{-1±\sqrt{5}}{2\times \frac{1}{2}}
Add 1 to 4.
x=\frac{-1±\sqrt{5}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{5}-1}{1}
Now solve the equation x=\frac{-1±\sqrt{5}}{1} when ± is plus. Add -1 to \sqrt{5}.
x=\sqrt{5}-1
Divide -1+\sqrt{5} by 1.
x=\frac{-\sqrt{5}-1}{1}
Now solve the equation x=\frac{-1±\sqrt{5}}{1} when ± is minus. Subtract \sqrt{5} from -1.
x=-\sqrt{5}-1
Divide -1-\sqrt{5} by 1.
x=\sqrt{5}-1 x=-\sqrt{5}-1
The equation is now solved.
\frac{1}{2}x^{2}+x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}+x}{\frac{1}{2}}=\frac{2}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{1}{\frac{1}{2}}x=\frac{2}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+2x=\frac{2}{\frac{1}{2}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
x^{2}+2x=4
Divide 2 by \frac{1}{2} by multiplying 2 by the reciprocal of \frac{1}{2}.
x^{2}+2x+1^{2}=4+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=4+1
Square 1.
x^{2}+2x+1=5
Add 4 to 1.
\left(x+1\right)^{2}=5
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x+1=\sqrt{5} x+1=-\sqrt{5}
Simplify.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Subtract 1 from both sides of the equation.
\frac{1}{2}x^{2}+x=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{2}x^{2}+x-2=2-2
Subtract 2 from both sides of the equation.
\frac{1}{2}x^{2}+x-2=0
Subtracting 2 from itself leaves 0.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 1 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
Square 1.
x=\frac{-1±\sqrt{1-2\left(-2\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-1±\sqrt{1+4}}{2\times \frac{1}{2}}
Multiply -2 times -2.
x=\frac{-1±\sqrt{5}}{2\times \frac{1}{2}}
Add 1 to 4.
x=\frac{-1±\sqrt{5}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{5}-1}{1}
Now solve the equation x=\frac{-1±\sqrt{5}}{1} when ± is plus. Add -1 to \sqrt{5}.
x=\sqrt{5}-1
Divide -1+\sqrt{5} by 1.
x=\frac{-\sqrt{5}-1}{1}
Now solve the equation x=\frac{-1±\sqrt{5}}{1} when ± is minus. Subtract \sqrt{5} from -1.
x=-\sqrt{5}-1
Divide -1-\sqrt{5} by 1.
x=\sqrt{5}-1 x=-\sqrt{5}-1
The equation is now solved.
\frac{1}{2}x^{2}+x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}+x}{\frac{1}{2}}=\frac{2}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{1}{\frac{1}{2}}x=\frac{2}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+2x=\frac{2}{\frac{1}{2}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
x^{2}+2x=4
Divide 2 by \frac{1}{2} by multiplying 2 by the reciprocal of \frac{1}{2}.
x^{2}+2x+1^{2}=4+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=4+1
Square 1.
x^{2}+2x+1=5
Add 4 to 1.
\left(x+1\right)^{2}=5
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x+1=\sqrt{5} x+1=-\sqrt{5}
Simplify.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}