Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-7\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x^{2}=-14
Multiply -7 and 2 to get -14.
x=\sqrt{14}i x=-\sqrt{14}i
The equation is now solved.
\frac{1}{2}x^{2}+7=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1}{2}\times 7}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 0 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1}{2}\times 7}}{2\times \frac{1}{2}}
Square 0.
x=\frac{0±\sqrt{-2\times 7}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{0±\sqrt{-14}}{2\times \frac{1}{2}}
Multiply -2 times 7.
x=\frac{0±\sqrt{14}i}{2\times \frac{1}{2}}
Take the square root of -14.
x=\frac{0±\sqrt{14}i}{1}
Multiply 2 times \frac{1}{2}.
x=\sqrt{14}i
Now solve the equation x=\frac{0±\sqrt{14}i}{1} when ± is plus.
x=-\sqrt{14}i
Now solve the equation x=\frac{0±\sqrt{14}i}{1} when ± is minus.
x=\sqrt{14}i x=-\sqrt{14}i
The equation is now solved.