Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}+\frac{9}{2}x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{9}{2}±\sqrt{\left(\frac{9}{2}\right)^{2}-4\times \frac{1}{2}\left(-7\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, \frac{9}{2} for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-4\times \frac{1}{2}\left(-7\right)}}{2\times \frac{1}{2}}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-2\left(-7\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}+14}}{2\times \frac{1}{2}}
Multiply -2 times -7.
x=\frac{-\frac{9}{2}±\sqrt{\frac{137}{4}}}{2\times \frac{1}{2}}
Add \frac{81}{4} to 14.
x=\frac{-\frac{9}{2}±\frac{\sqrt{137}}{2}}{2\times \frac{1}{2}}
Take the square root of \frac{137}{4}.
x=\frac{-\frac{9}{2}±\frac{\sqrt{137}}{2}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{137}-9}{2}
Now solve the equation x=\frac{-\frac{9}{2}±\frac{\sqrt{137}}{2}}{1} when ± is plus. Add -\frac{9}{2} to \frac{\sqrt{137}}{2}.
x=\frac{-\sqrt{137}-9}{2}
Now solve the equation x=\frac{-\frac{9}{2}±\frac{\sqrt{137}}{2}}{1} when ± is minus. Subtract \frac{\sqrt{137}}{2} from -\frac{9}{2}.
x=\frac{\sqrt{137}-9}{2} x=\frac{-\sqrt{137}-9}{2}
The equation is now solved.
\frac{1}{2}x^{2}+\frac{9}{2}x-7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}+\frac{9}{2}x-7-\left(-7\right)=-\left(-7\right)
Add 7 to both sides of the equation.
\frac{1}{2}x^{2}+\frac{9}{2}x=-\left(-7\right)
Subtracting -7 from itself leaves 0.
\frac{1}{2}x^{2}+\frac{9}{2}x=7
Subtract -7 from 0.
\frac{\frac{1}{2}x^{2}+\frac{9}{2}x}{\frac{1}{2}}=\frac{7}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{\frac{9}{2}}{\frac{1}{2}}x=\frac{7}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+9x=\frac{7}{\frac{1}{2}}
Divide \frac{9}{2} by \frac{1}{2} by multiplying \frac{9}{2} by the reciprocal of \frac{1}{2}.
x^{2}+9x=14
Divide 7 by \frac{1}{2} by multiplying 7 by the reciprocal of \frac{1}{2}.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=14+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+9x+\frac{81}{4}=14+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+9x+\frac{81}{4}=\frac{137}{4}
Add 14 to \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{137}{4}
Factor x^{2}+9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{137}{4}}
Take the square root of both sides of the equation.
x+\frac{9}{2}=\frac{\sqrt{137}}{2} x+\frac{9}{2}=-\frac{\sqrt{137}}{2}
Simplify.
x=\frac{\sqrt{137}-9}{2} x=\frac{-\sqrt{137}-9}{2}
Subtract \frac{9}{2} from both sides of the equation.