Solve for x
x=21-2z-2y
Solve for y
y=-\frac{x}{2}-z+\frac{21}{2}
Share
Copied to clipboard
\frac{1}{2}x+z-\frac{21}{2}=-y
Subtract y from both sides. Anything subtracted from zero gives its negation.
\frac{1}{2}x-\frac{21}{2}=-y-z
Subtract z from both sides.
\frac{1}{2}x=-y-z+\frac{21}{2}
Add \frac{21}{2} to both sides.
\frac{1}{2}x=\frac{21}{2}-z-y
The equation is in standard form.
\frac{\frac{1}{2}x}{\frac{1}{2}}=\frac{\frac{21}{2}-z-y}{\frac{1}{2}}
Multiply both sides by 2.
x=\frac{\frac{21}{2}-z-y}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x=21-2z-2y
Divide -y-z+\frac{21}{2} by \frac{1}{2} by multiplying -y-z+\frac{21}{2} by the reciprocal of \frac{1}{2}.
y+z-\frac{21}{2}=-\frac{1}{2}x
Subtract \frac{1}{2}x from both sides. Anything subtracted from zero gives its negation.
y-\frac{21}{2}=-\frac{1}{2}x-z
Subtract z from both sides.
y=-\frac{1}{2}x-z+\frac{21}{2}
Add \frac{21}{2} to both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}