Solve for x
x=4
Graph
Share
Copied to clipboard
\frac{1}{2}x+2=\frac{2}{3}x+\frac{2}{3}\times 2
Use the distributive property to multiply \frac{2}{3} by x+2.
\frac{1}{2}x+2=\frac{2}{3}x+\frac{2\times 2}{3}
Express \frac{2}{3}\times 2 as a single fraction.
\frac{1}{2}x+2=\frac{2}{3}x+\frac{4}{3}
Multiply 2 and 2 to get 4.
\frac{1}{2}x+2-\frac{2}{3}x=\frac{4}{3}
Subtract \frac{2}{3}x from both sides.
-\frac{1}{6}x+2=\frac{4}{3}
Combine \frac{1}{2}x and -\frac{2}{3}x to get -\frac{1}{6}x.
-\frac{1}{6}x=\frac{4}{3}-2
Subtract 2 from both sides.
-\frac{1}{6}x=\frac{4}{3}-\frac{6}{3}
Convert 2 to fraction \frac{6}{3}.
-\frac{1}{6}x=\frac{4-6}{3}
Since \frac{4}{3} and \frac{6}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{6}x=-\frac{2}{3}
Subtract 6 from 4 to get -2.
x=-\frac{2}{3}\left(-6\right)
Multiply both sides by -6, the reciprocal of -\frac{1}{6}.
x=\frac{-2\left(-6\right)}{3}
Express -\frac{2}{3}\left(-6\right) as a single fraction.
x=\frac{12}{3}
Multiply -2 and -6 to get 12.
x=4
Divide 12 by 3 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}