Solve for x
x=\frac{\sqrt{55}}{11}\approx 0.674199862
x=-\frac{\sqrt{55}}{11}\approx -0.674199862
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 1 } { 2 } x + \frac { 3 } { 5 } x = \frac { 1 } { 2 x }
Share
Copied to clipboard
\frac{1}{2}x\times 10x+\frac{3}{5}x\times 10x=5
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 10x, the least common multiple of 2,5,2x.
5xx+\frac{3}{5}x\times 10x=5
Multiply \frac{1}{2} and 10 to get 5.
5x^{2}+\frac{3}{5}x\times 10x=5
Multiply x and x to get x^{2}.
5x^{2}+\frac{3}{5}x^{2}\times 10=5
Multiply x and x to get x^{2}.
5x^{2}+6x^{2}=5
Multiply \frac{3}{5} and 10 to get 6.
11x^{2}=5
Combine 5x^{2} and 6x^{2} to get 11x^{2}.
x^{2}=\frac{5}{11}
Divide both sides by 11.
x=\frac{\sqrt{55}}{11} x=-\frac{\sqrt{55}}{11}
Take the square root of both sides of the equation.
\frac{1}{2}x\times 10x+\frac{3}{5}x\times 10x=5
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 10x, the least common multiple of 2,5,2x.
5xx+\frac{3}{5}x\times 10x=5
Multiply \frac{1}{2} and 10 to get 5.
5x^{2}+\frac{3}{5}x\times 10x=5
Multiply x and x to get x^{2}.
5x^{2}+\frac{3}{5}x^{2}\times 10=5
Multiply x and x to get x^{2}.
5x^{2}+6x^{2}=5
Multiply \frac{3}{5} and 10 to get 6.
11x^{2}=5
Combine 5x^{2} and 6x^{2} to get 11x^{2}.
11x^{2}-5=0
Subtract 5 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 11\left(-5\right)}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 11 for a, 0 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 11\left(-5\right)}}{2\times 11}
Square 0.
x=\frac{0±\sqrt{-44\left(-5\right)}}{2\times 11}
Multiply -4 times 11.
x=\frac{0±\sqrt{220}}{2\times 11}
Multiply -44 times -5.
x=\frac{0±2\sqrt{55}}{2\times 11}
Take the square root of 220.
x=\frac{0±2\sqrt{55}}{22}
Multiply 2 times 11.
x=\frac{\sqrt{55}}{11}
Now solve the equation x=\frac{0±2\sqrt{55}}{22} when ± is plus.
x=-\frac{\sqrt{55}}{11}
Now solve the equation x=\frac{0±2\sqrt{55}}{22} when ± is minus.
x=\frac{\sqrt{55}}{11} x=-\frac{\sqrt{55}}{11}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}