Solve for t
t=-\frac{2}{15}\approx -0.133333333
Share
Copied to clipboard
\frac{1}{2}t+\frac{3}{5}+t=\frac{2}{5}
Add t to both sides.
\frac{3}{2}t+\frac{3}{5}=\frac{2}{5}
Combine \frac{1}{2}t and t to get \frac{3}{2}t.
\frac{3}{2}t=\frac{2}{5}-\frac{3}{5}
Subtract \frac{3}{5} from both sides.
\frac{3}{2}t=\frac{2-3}{5}
Since \frac{2}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{2}t=-\frac{1}{5}
Subtract 3 from 2 to get -1.
t=-\frac{1}{5}\times \frac{2}{3}
Multiply both sides by \frac{2}{3}, the reciprocal of \frac{3}{2}.
t=\frac{-2}{5\times 3}
Multiply -\frac{1}{5} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
t=\frac{-2}{15}
Do the multiplications in the fraction \frac{-2}{5\times 3}.
t=-\frac{2}{15}
Fraction \frac{-2}{15} can be rewritten as -\frac{2}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}