Evaluate
\frac{n\left(n-1\right)\left(3n-1\right)}{2}
Expand
\frac{3n^{3}}{2}-2n^{2}+\frac{n}{2}
Share
Copied to clipboard
\left(\frac{1}{2}nn+\frac{1}{2}n\left(-1\right)\right)\left(3n-1\right)
Use the distributive property to multiply \frac{1}{2}n by n-1.
\left(\frac{1}{2}n^{2}+\frac{1}{2}n\left(-1\right)\right)\left(3n-1\right)
Multiply n and n to get n^{2}.
\left(\frac{1}{2}n^{2}-\frac{1}{2}n\right)\left(3n-1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{1}{2}n^{2}\times 3n+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n\times 3n-\frac{1}{2}n\left(-1\right)
Apply the distributive property by multiplying each term of \frac{1}{2}n^{2}-\frac{1}{2}n by each term of 3n-1.
\frac{1}{2}n^{3}\times 3+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n\times 3n-\frac{1}{2}n\left(-1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}n^{3}\times 3+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n^{2}\times 3-\frac{1}{2}n\left(-1\right)
Multiply n and n to get n^{2}.
\frac{3}{2}n^{3}+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n^{2}\times 3-\frac{1}{2}n\left(-1\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}n^{3}-\frac{1}{2}n^{2}-\frac{1}{2}n^{2}\times 3-\frac{1}{2}n\left(-1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{3}{2}n^{3}-\frac{1}{2}n^{2}+\frac{-3}{2}n^{2}-\frac{1}{2}n\left(-1\right)
Express -\frac{1}{2}\times 3 as a single fraction.
\frac{3}{2}n^{3}-\frac{1}{2}n^{2}-\frac{3}{2}n^{2}-\frac{1}{2}n\left(-1\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{3}{2}n^{3}-2n^{2}-\frac{1}{2}n\left(-1\right)
Combine -\frac{1}{2}n^{2} and -\frac{3}{2}n^{2} to get -2n^{2}.
\frac{3}{2}n^{3}-2n^{2}+\frac{1}{2}n
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
\left(\frac{1}{2}nn+\frac{1}{2}n\left(-1\right)\right)\left(3n-1\right)
Use the distributive property to multiply \frac{1}{2}n by n-1.
\left(\frac{1}{2}n^{2}+\frac{1}{2}n\left(-1\right)\right)\left(3n-1\right)
Multiply n and n to get n^{2}.
\left(\frac{1}{2}n^{2}-\frac{1}{2}n\right)\left(3n-1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{1}{2}n^{2}\times 3n+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n\times 3n-\frac{1}{2}n\left(-1\right)
Apply the distributive property by multiplying each term of \frac{1}{2}n^{2}-\frac{1}{2}n by each term of 3n-1.
\frac{1}{2}n^{3}\times 3+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n\times 3n-\frac{1}{2}n\left(-1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}n^{3}\times 3+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n^{2}\times 3-\frac{1}{2}n\left(-1\right)
Multiply n and n to get n^{2}.
\frac{3}{2}n^{3}+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n^{2}\times 3-\frac{1}{2}n\left(-1\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}n^{3}-\frac{1}{2}n^{2}-\frac{1}{2}n^{2}\times 3-\frac{1}{2}n\left(-1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{3}{2}n^{3}-\frac{1}{2}n^{2}+\frac{-3}{2}n^{2}-\frac{1}{2}n\left(-1\right)
Express -\frac{1}{2}\times 3 as a single fraction.
\frac{3}{2}n^{3}-\frac{1}{2}n^{2}-\frac{3}{2}n^{2}-\frac{1}{2}n\left(-1\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{3}{2}n^{3}-2n^{2}-\frac{1}{2}n\left(-1\right)
Combine -\frac{1}{2}n^{2} and -\frac{3}{2}n^{2} to get -2n^{2}.
\frac{3}{2}n^{3}-2n^{2}+\frac{1}{2}n
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}