Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{2}nn+\frac{1}{2}n\left(-1\right)\right)\left(3n-1\right)
Use the distributive property to multiply \frac{1}{2}n by n-1.
\left(\frac{1}{2}n^{2}+\frac{1}{2}n\left(-1\right)\right)\left(3n-1\right)
Multiply n and n to get n^{2}.
\left(\frac{1}{2}n^{2}-\frac{1}{2}n\right)\left(3n-1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{1}{2}n^{2}\times 3n+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n\times 3n-\frac{1}{2}n\left(-1\right)
Apply the distributive property by multiplying each term of \frac{1}{2}n^{2}-\frac{1}{2}n by each term of 3n-1.
\frac{1}{2}n^{3}\times 3+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n\times 3n-\frac{1}{2}n\left(-1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}n^{3}\times 3+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n^{2}\times 3-\frac{1}{2}n\left(-1\right)
Multiply n and n to get n^{2}.
\frac{3}{2}n^{3}+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n^{2}\times 3-\frac{1}{2}n\left(-1\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}n^{3}-\frac{1}{2}n^{2}-\frac{1}{2}n^{2}\times 3-\frac{1}{2}n\left(-1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{3}{2}n^{3}-\frac{1}{2}n^{2}+\frac{-3}{2}n^{2}-\frac{1}{2}n\left(-1\right)
Express -\frac{1}{2}\times 3 as a single fraction.
\frac{3}{2}n^{3}-\frac{1}{2}n^{2}-\frac{3}{2}n^{2}-\frac{1}{2}n\left(-1\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{3}{2}n^{3}-2n^{2}-\frac{1}{2}n\left(-1\right)
Combine -\frac{1}{2}n^{2} and -\frac{3}{2}n^{2} to get -2n^{2}.
\frac{3}{2}n^{3}-2n^{2}+\frac{1}{2}n
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
\left(\frac{1}{2}nn+\frac{1}{2}n\left(-1\right)\right)\left(3n-1\right)
Use the distributive property to multiply \frac{1}{2}n by n-1.
\left(\frac{1}{2}n^{2}+\frac{1}{2}n\left(-1\right)\right)\left(3n-1\right)
Multiply n and n to get n^{2}.
\left(\frac{1}{2}n^{2}-\frac{1}{2}n\right)\left(3n-1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{1}{2}n^{2}\times 3n+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n\times 3n-\frac{1}{2}n\left(-1\right)
Apply the distributive property by multiplying each term of \frac{1}{2}n^{2}-\frac{1}{2}n by each term of 3n-1.
\frac{1}{2}n^{3}\times 3+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n\times 3n-\frac{1}{2}n\left(-1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}n^{3}\times 3+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n^{2}\times 3-\frac{1}{2}n\left(-1\right)
Multiply n and n to get n^{2}.
\frac{3}{2}n^{3}+\frac{1}{2}n^{2}\left(-1\right)-\frac{1}{2}n^{2}\times 3-\frac{1}{2}n\left(-1\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}n^{3}-\frac{1}{2}n^{2}-\frac{1}{2}n^{2}\times 3-\frac{1}{2}n\left(-1\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{3}{2}n^{3}-\frac{1}{2}n^{2}+\frac{-3}{2}n^{2}-\frac{1}{2}n\left(-1\right)
Express -\frac{1}{2}\times 3 as a single fraction.
\frac{3}{2}n^{3}-\frac{1}{2}n^{2}-\frac{3}{2}n^{2}-\frac{1}{2}n\left(-1\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{3}{2}n^{3}-2n^{2}-\frac{1}{2}n\left(-1\right)
Combine -\frac{1}{2}n^{2} and -\frac{3}{2}n^{2} to get -2n^{2}.
\frac{3}{2}n^{3}-2n^{2}+\frac{1}{2}n
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.