Solve for m
m = \frac{\sqrt{129} - 9}{2} \approx 1.178908346
m=\frac{-\sqrt{129}-9}{2}\approx -10.178908346
Quiz
Quadratic Equation
5 problems similar to:
\frac { 1 } { 2 } m ^ { 2 } + \frac { 9 } { 2 } m - 6 = 0
Share
Copied to clipboard
\frac{1}{2}m^{2}+\frac{9}{2}m-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\frac{9}{2}±\sqrt{\left(\frac{9}{2}\right)^{2}-4\times \frac{1}{2}\left(-6\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, \frac{9}{2} for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-4\times \frac{1}{2}\left(-6\right)}}{2\times \frac{1}{2}}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
m=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-2\left(-6\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
m=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}+12}}{2\times \frac{1}{2}}
Multiply -2 times -6.
m=\frac{-\frac{9}{2}±\sqrt{\frac{129}{4}}}{2\times \frac{1}{2}}
Add \frac{81}{4} to 12.
m=\frac{-\frac{9}{2}±\frac{\sqrt{129}}{2}}{2\times \frac{1}{2}}
Take the square root of \frac{129}{4}.
m=\frac{-\frac{9}{2}±\frac{\sqrt{129}}{2}}{1}
Multiply 2 times \frac{1}{2}.
m=\frac{\sqrt{129}-9}{2}
Now solve the equation m=\frac{-\frac{9}{2}±\frac{\sqrt{129}}{2}}{1} when ± is plus. Add -\frac{9}{2} to \frac{\sqrt{129}}{2}.
m=\frac{-\sqrt{129}-9}{2}
Now solve the equation m=\frac{-\frac{9}{2}±\frac{\sqrt{129}}{2}}{1} when ± is minus. Subtract \frac{\sqrt{129}}{2} from -\frac{9}{2}.
m=\frac{\sqrt{129}-9}{2} m=\frac{-\sqrt{129}-9}{2}
The equation is now solved.
\frac{1}{2}m^{2}+\frac{9}{2}m-6=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}m^{2}+\frac{9}{2}m-6-\left(-6\right)=-\left(-6\right)
Add 6 to both sides of the equation.
\frac{1}{2}m^{2}+\frac{9}{2}m=-\left(-6\right)
Subtracting -6 from itself leaves 0.
\frac{1}{2}m^{2}+\frac{9}{2}m=6
Subtract -6 from 0.
\frac{\frac{1}{2}m^{2}+\frac{9}{2}m}{\frac{1}{2}}=\frac{6}{\frac{1}{2}}
Multiply both sides by 2.
m^{2}+\frac{\frac{9}{2}}{\frac{1}{2}}m=\frac{6}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
m^{2}+9m=\frac{6}{\frac{1}{2}}
Divide \frac{9}{2} by \frac{1}{2} by multiplying \frac{9}{2} by the reciprocal of \frac{1}{2}.
m^{2}+9m=12
Divide 6 by \frac{1}{2} by multiplying 6 by the reciprocal of \frac{1}{2}.
m^{2}+9m+\left(\frac{9}{2}\right)^{2}=12+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+9m+\frac{81}{4}=12+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}+9m+\frac{81}{4}=\frac{129}{4}
Add 12 to \frac{81}{4}.
\left(m+\frac{9}{2}\right)^{2}=\frac{129}{4}
Factor m^{2}+9m+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{9}{2}\right)^{2}}=\sqrt{\frac{129}{4}}
Take the square root of both sides of the equation.
m+\frac{9}{2}=\frac{\sqrt{129}}{2} m+\frac{9}{2}=-\frac{\sqrt{129}}{2}
Simplify.
m=\frac{\sqrt{129}-9}{2} m=\frac{-\sqrt{129}-9}{2}
Subtract \frac{9}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}