Skip to main content
Solve for A_s (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for A_s
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

nA_{s}y-nA_{s}d=-\frac{1}{2}by^{2}
Subtract \frac{1}{2}by^{2} from both sides. Anything subtracted from zero gives its negation.
\left(ny-nd\right)A_{s}=-\frac{1}{2}by^{2}
Combine all terms containing A_{s}.
\left(ny-dn\right)A_{s}=-\frac{by^{2}}{2}
The equation is in standard form.
\frac{\left(ny-dn\right)A_{s}}{ny-dn}=-\frac{\frac{by^{2}}{2}}{ny-dn}
Divide both sides by ny-nd.
A_{s}=-\frac{\frac{by^{2}}{2}}{ny-dn}
Dividing by ny-nd undoes the multiplication by ny-nd.
A_{s}=-\frac{by^{2}}{2n\left(y-d\right)}
Divide -\frac{by^{2}}{2} by ny-nd.
\frac{1}{2}by^{2}+nA_{s}y=0+nA_{s}d
Add nA_{s}d to both sides.
\frac{1}{2}by^{2}+nA_{s}y=nA_{s}d
Anything plus zero gives itself.
\frac{1}{2}by^{2}=nA_{s}d-nA_{s}y
Subtract nA_{s}y from both sides.
\frac{1}{2}by^{2}=-A_{s}ny+A_{s}dn
Reorder the terms.
\frac{y^{2}}{2}b=A_{s}dn-A_{s}ny
The equation is in standard form.
\frac{2\times \frac{y^{2}}{2}b}{y^{2}}=\frac{2A_{s}n\left(d-y\right)}{y^{2}}
Divide both sides by \frac{1}{2}y^{2}.
b=\frac{2A_{s}n\left(d-y\right)}{y^{2}}
Dividing by \frac{1}{2}y^{2} undoes the multiplication by \frac{1}{2}y^{2}.
nA_{s}y-nA_{s}d=-\frac{1}{2}by^{2}
Subtract \frac{1}{2}by^{2} from both sides. Anything subtracted from zero gives its negation.
\left(ny-nd\right)A_{s}=-\frac{1}{2}by^{2}
Combine all terms containing A_{s}.
\left(ny-dn\right)A_{s}=-\frac{by^{2}}{2}
The equation is in standard form.
\frac{\left(ny-dn\right)A_{s}}{ny-dn}=-\frac{\frac{by^{2}}{2}}{ny-dn}
Divide both sides by ny-nd.
A_{s}=-\frac{\frac{by^{2}}{2}}{ny-dn}
Dividing by ny-nd undoes the multiplication by ny-nd.
A_{s}=-\frac{by^{2}}{2n\left(y-d\right)}
Divide -\frac{by^{2}}{2} by ny-nd.
\frac{1}{2}by^{2}+nA_{s}y=0+nA_{s}d
Add nA_{s}d to both sides.
\frac{1}{2}by^{2}+nA_{s}y=nA_{s}d
Anything plus zero gives itself.
\frac{1}{2}by^{2}=nA_{s}d-nA_{s}y
Subtract nA_{s}y from both sides.
\frac{1}{2}by^{2}=-A_{s}ny+A_{s}dn
Reorder the terms.
\frac{y^{2}}{2}b=A_{s}dn-A_{s}ny
The equation is in standard form.
\frac{2\times \frac{y^{2}}{2}b}{y^{2}}=\frac{2A_{s}n\left(d-y\right)}{y^{2}}
Divide both sides by \frac{1}{2}y^{2}.
b=\frac{2A_{s}n\left(d-y\right)}{y^{2}}
Dividing by \frac{1}{2}y^{2} undoes the multiplication by \frac{1}{2}y^{2}.