Solve for a
\left\{\begin{matrix}a=-\frac{3\left(3-h\right)}{3+k-h}\text{, }&k\neq h-3\\a\in \mathrm{R}\text{, }&h=3\text{ and }k=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{ak+3a+9}{a+3}\text{, }&a\neq -3\\h\in \mathrm{R}\text{, }&k=0\text{ and }a=-3\end{matrix}\right.
Share
Copied to clipboard
ak=\left(a+3\right)\left(h-3\right)
Cancel out \frac{1}{2} on both sides.
ak=ah-3a+3h-9
Use the distributive property to multiply a+3 by h-3.
ak-ah=-3a+3h-9
Subtract ah from both sides.
ak-ah+3a=3h-9
Add 3a to both sides.
\left(k-h+3\right)a=3h-9
Combine all terms containing a.
\left(3+k-h\right)a=3h-9
The equation is in standard form.
\frac{\left(3+k-h\right)a}{3+k-h}=\frac{3h-9}{3+k-h}
Divide both sides by k+3-h.
a=\frac{3h-9}{3+k-h}
Dividing by k+3-h undoes the multiplication by k+3-h.
a=\frac{3\left(h-3\right)}{3+k-h}
Divide -9+3h by k+3-h.
ak=\left(a+3\right)\left(h-3\right)
Cancel out \frac{1}{2} on both sides.
ak=ah-3a+3h-9
Use the distributive property to multiply a+3 by h-3.
ah-3a+3h-9=ak
Swap sides so that all variable terms are on the left hand side.
ah+3h-9=ak+3a
Add 3a to both sides.
ah+3h=ak+3a+9
Add 9 to both sides.
\left(a+3\right)h=ak+3a+9
Combine all terms containing h.
\frac{\left(a+3\right)h}{a+3}=\frac{ak+3a+9}{a+3}
Divide both sides by a+3.
h=\frac{ak+3a+9}{a+3}
Dividing by a+3 undoes the multiplication by a+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}