Solve for a
a = \frac{50 \sqrt{6}}{3} \approx 40.824829046
Share
Copied to clipboard
\frac{1}{2}a\left(2\sqrt{2}+\sqrt{32}\right)\sqrt{3}=300
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{1}{2}a\left(2\sqrt{2}+4\sqrt{2}\right)\sqrt{3}=300
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{1}{2}a\times 6\sqrt{2}\sqrt{3}=300
Combine 2\sqrt{2} and 4\sqrt{2} to get 6\sqrt{2}.
\frac{6}{2}a\sqrt{2}\sqrt{3}=300
Multiply \frac{1}{2} and 6 to get \frac{6}{2}.
3a\sqrt{2}\sqrt{3}=300
Divide 6 by 2 to get 3.
3a\sqrt{6}=300
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
3\sqrt{6}a=300
The equation is in standard form.
\frac{3\sqrt{6}a}{3\sqrt{6}}=\frac{300}{3\sqrt{6}}
Divide both sides by 3\sqrt{6}.
a=\frac{300}{3\sqrt{6}}
Dividing by 3\sqrt{6} undoes the multiplication by 3\sqrt{6}.
a=\frac{50\sqrt{6}}{3}
Divide 300 by 3\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}