Solve for b
b=\frac{8}{a}
a\neq 0
Solve for a
a=\frac{8}{b}
b\neq 0
Share
Copied to clipboard
\frac{1}{2}a\left(\frac{12}{a}-b\right)\times 2a=4a
Multiply both sides of the equation by 2a, the least common multiple of 2,a.
\frac{1}{2}a\left(\frac{12}{a}-\frac{ba}{a}\right)\times 2a=4a
To add or subtract expressions, expand them to make their denominators the same. Multiply b times \frac{a}{a}.
\frac{1}{2}a\times \frac{12-ba}{a}\times 2a=4a
Since \frac{12}{a} and \frac{ba}{a} have the same denominator, subtract them by subtracting their numerators.
a\times \frac{12-ba}{a}a=4a
Multiply \frac{1}{2} and 2 to get 1.
a^{2}\times \frac{12-ba}{a}=4a
Multiply a and a to get a^{2}.
\frac{a^{2}\left(12-ba\right)}{a}=4a
Express a^{2}\times \frac{12-ba}{a} as a single fraction.
a\left(-ab+12\right)=4a
Cancel out a in both numerator and denominator.
-ba^{2}+12a=4a
Use the distributive property to multiply a by -ab+12.
-ba^{2}=4a-12a
Subtract 12a from both sides.
-ba^{2}=-8a
Combine 4a and -12a to get -8a.
\left(-a^{2}\right)b=-8a
The equation is in standard form.
\frac{\left(-a^{2}\right)b}{-a^{2}}=-\frac{8a}{-a^{2}}
Divide both sides by -a^{2}.
b=-\frac{8a}{-a^{2}}
Dividing by -a^{2} undoes the multiplication by -a^{2}.
b=\frac{8}{a}
Divide -8a by -a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}