Evaluate
\frac{ab^{5}}{2}
Expand
\frac{ab^{5}}{2}
Share
Copied to clipboard
\frac{1}{2}a^{4}b^{4}-\left(\frac{1}{2}a^{3}b-\frac{1}{4}b^{2}\right)\left(2ab^{3}+2a^{4}b^{2}\right)-2a^{7}b\left(-\frac{1}{2}\right)b^{2}
To multiply powers of the same base, add their exponents. Add 5 and 2 to get 7.
\frac{1}{2}a^{4}b^{4}-\left(\frac{1}{2}a^{3}b-\frac{1}{4}b^{2}\right)\left(2ab^{3}+2a^{4}b^{2}\right)-2a^{7}b^{3}\left(-\frac{1}{2}\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{1}{2}a^{4}b^{4}-\left(\frac{1}{2}a^{4}b^{4}+a^{7}b^{3}-\frac{1}{2}b^{5}a\right)-2a^{7}b^{3}\left(-\frac{1}{2}\right)
Use the distributive property to multiply \frac{1}{2}a^{3}b-\frac{1}{4}b^{2} by 2ab^{3}+2a^{4}b^{2} and combine like terms.
\frac{1}{2}a^{4}b^{4}-\frac{1}{2}a^{4}b^{4}-a^{7}b^{3}+\frac{1}{2}b^{5}a-2a^{7}b^{3}\left(-\frac{1}{2}\right)
To find the opposite of \frac{1}{2}a^{4}b^{4}+a^{7}b^{3}-\frac{1}{2}b^{5}a, find the opposite of each term.
-a^{7}b^{3}+\frac{1}{2}b^{5}a-2a^{7}b^{3}\left(-\frac{1}{2}\right)
Combine \frac{1}{2}a^{4}b^{4} and -\frac{1}{2}a^{4}b^{4} to get 0.
-a^{7}b^{3}+\frac{1}{2}b^{5}a-\left(-a^{7}b^{3}\right)
Multiply 2 and -\frac{1}{2} to get -1.
-a^{7}b^{3}+\frac{1}{2}b^{5}a+a^{7}b^{3}
The opposite of -a^{7}b^{3} is a^{7}b^{3}.
\frac{1}{2}b^{5}a
Combine -a^{7}b^{3} and a^{7}b^{3} to get 0.
\frac{1}{2}a^{4}b^{4}-\left(\frac{1}{2}a^{3}b-\frac{1}{4}b^{2}\right)\left(2ab^{3}+2a^{4}b^{2}\right)-2a^{7}b\left(-\frac{1}{2}\right)b^{2}
To multiply powers of the same base, add their exponents. Add 5 and 2 to get 7.
\frac{1}{2}a^{4}b^{4}-\left(\frac{1}{2}a^{3}b-\frac{1}{4}b^{2}\right)\left(2ab^{3}+2a^{4}b^{2}\right)-2a^{7}b^{3}\left(-\frac{1}{2}\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{1}{2}a^{4}b^{4}-\left(\frac{1}{2}a^{4}b^{4}+a^{7}b^{3}-\frac{1}{2}b^{5}a\right)-2a^{7}b^{3}\left(-\frac{1}{2}\right)
Use the distributive property to multiply \frac{1}{2}a^{3}b-\frac{1}{4}b^{2} by 2ab^{3}+2a^{4}b^{2} and combine like terms.
\frac{1}{2}a^{4}b^{4}-\frac{1}{2}a^{4}b^{4}-a^{7}b^{3}+\frac{1}{2}b^{5}a-2a^{7}b^{3}\left(-\frac{1}{2}\right)
To find the opposite of \frac{1}{2}a^{4}b^{4}+a^{7}b^{3}-\frac{1}{2}b^{5}a, find the opposite of each term.
-a^{7}b^{3}+\frac{1}{2}b^{5}a-2a^{7}b^{3}\left(-\frac{1}{2}\right)
Combine \frac{1}{2}a^{4}b^{4} and -\frac{1}{2}a^{4}b^{4} to get 0.
-a^{7}b^{3}+\frac{1}{2}b^{5}a-\left(-a^{7}b^{3}\right)
Multiply 2 and -\frac{1}{2} to get -1.
-a^{7}b^{3}+\frac{1}{2}b^{5}a+a^{7}b^{3}
The opposite of -a^{7}b^{3} is a^{7}b^{3}.
\frac{1}{2}b^{5}a
Combine -a^{7}b^{3} and a^{7}b^{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}