Solve for a
a = \frac{\sqrt{241} - 1}{12} \approx 1.210347891
a=\frac{-\sqrt{241}-1}{12}\approx -1.377014558
Share
Copied to clipboard
\frac{1}{2}a+3a^{2}=5
Multiply a and a to get a^{2}.
\frac{1}{2}a+3a^{2}-5=0
Subtract 5 from both sides.
3a^{2}+\frac{1}{2}a-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\times 3\left(-5\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, \frac{1}{2} for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\times 3\left(-5\right)}}{2\times 3}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
a=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-12\left(-5\right)}}{2\times 3}
Multiply -4 times 3.
a=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+60}}{2\times 3}
Multiply -12 times -5.
a=\frac{-\frac{1}{2}±\sqrt{\frac{241}{4}}}{2\times 3}
Add \frac{1}{4} to 60.
a=\frac{-\frac{1}{2}±\frac{\sqrt{241}}{2}}{2\times 3}
Take the square root of \frac{241}{4}.
a=\frac{-\frac{1}{2}±\frac{\sqrt{241}}{2}}{6}
Multiply 2 times 3.
a=\frac{\sqrt{241}-1}{2\times 6}
Now solve the equation a=\frac{-\frac{1}{2}±\frac{\sqrt{241}}{2}}{6} when ± is plus. Add -\frac{1}{2} to \frac{\sqrt{241}}{2}.
a=\frac{\sqrt{241}-1}{12}
Divide \frac{-1+\sqrt{241}}{2} by 6.
a=\frac{-\sqrt{241}-1}{2\times 6}
Now solve the equation a=\frac{-\frac{1}{2}±\frac{\sqrt{241}}{2}}{6} when ± is minus. Subtract \frac{\sqrt{241}}{2} from -\frac{1}{2}.
a=\frac{-\sqrt{241}-1}{12}
Divide \frac{-1-\sqrt{241}}{2} by 6.
a=\frac{\sqrt{241}-1}{12} a=\frac{-\sqrt{241}-1}{12}
The equation is now solved.
\frac{1}{2}a+3a^{2}=5
Multiply a and a to get a^{2}.
3a^{2}+\frac{1}{2}a=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3a^{2}+\frac{1}{2}a}{3}=\frac{5}{3}
Divide both sides by 3.
a^{2}+\frac{\frac{1}{2}}{3}a=\frac{5}{3}
Dividing by 3 undoes the multiplication by 3.
a^{2}+\frac{1}{6}a=\frac{5}{3}
Divide \frac{1}{2} by 3.
a^{2}+\frac{1}{6}a+\left(\frac{1}{12}\right)^{2}=\frac{5}{3}+\left(\frac{1}{12}\right)^{2}
Divide \frac{1}{6}, the coefficient of the x term, by 2 to get \frac{1}{12}. Then add the square of \frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{1}{6}a+\frac{1}{144}=\frac{5}{3}+\frac{1}{144}
Square \frac{1}{12} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{1}{6}a+\frac{1}{144}=\frac{241}{144}
Add \frac{5}{3} to \frac{1}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{1}{12}\right)^{2}=\frac{241}{144}
Factor a^{2}+\frac{1}{6}a+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{12}\right)^{2}}=\sqrt{\frac{241}{144}}
Take the square root of both sides of the equation.
a+\frac{1}{12}=\frac{\sqrt{241}}{12} a+\frac{1}{12}=-\frac{\sqrt{241}}{12}
Simplify.
a=\frac{\sqrt{241}-1}{12} a=\frac{-\sqrt{241}-1}{12}
Subtract \frac{1}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}