Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}=\frac{\left(\frac{1}{2}\right)^{2}-4}{\left(\frac{1}{3}\right)^{3}-\left(\frac{1}{2}\right)^{2}-6\times \frac{1}{2}}
Multiply \frac{1}{2} and 1 to get \frac{1}{2}.
\frac{1}{2}=\frac{\frac{1}{4}-4}{\left(\frac{1}{3}\right)^{3}-\left(\frac{1}{2}\right)^{2}-6\times \frac{1}{2}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{2}=\frac{\frac{1}{4}-\frac{16}{4}}{\left(\frac{1}{3}\right)^{3}-\left(\frac{1}{2}\right)^{2}-6\times \frac{1}{2}}
Convert 4 to fraction \frac{16}{4}.
\frac{1}{2}=\frac{\frac{1-16}{4}}{\left(\frac{1}{3}\right)^{3}-\left(\frac{1}{2}\right)^{2}-6\times \frac{1}{2}}
Since \frac{1}{4} and \frac{16}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}=\frac{-\frac{15}{4}}{\left(\frac{1}{3}\right)^{3}-\left(\frac{1}{2}\right)^{2}-6\times \frac{1}{2}}
Subtract 16 from 1 to get -15.
\frac{1}{2}=\frac{-\frac{15}{4}}{\frac{1}{27}-\left(\frac{1}{2}\right)^{2}-6\times \frac{1}{2}}
Calculate \frac{1}{3} to the power of 3 and get \frac{1}{27}.
\frac{1}{2}=\frac{-\frac{15}{4}}{\frac{1}{27}-\frac{1}{4}-6\times \frac{1}{2}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{2}=\frac{-\frac{15}{4}}{\frac{4}{108}-\frac{27}{108}-6\times \frac{1}{2}}
Least common multiple of 27 and 4 is 108. Convert \frac{1}{27} and \frac{1}{4} to fractions with denominator 108.
\frac{1}{2}=\frac{-\frac{15}{4}}{\frac{4-27}{108}-6\times \frac{1}{2}}
Since \frac{4}{108} and \frac{27}{108} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}=\frac{-\frac{15}{4}}{-\frac{23}{108}-6\times \frac{1}{2}}
Subtract 27 from 4 to get -23.
\frac{1}{2}=\frac{-\frac{15}{4}}{-\frac{23}{108}-\frac{6}{2}}
Multiply 6 and \frac{1}{2} to get \frac{6}{2}.
\frac{1}{2}=\frac{-\frac{15}{4}}{-\frac{23}{108}-3}
Divide 6 by 2 to get 3.
\frac{1}{2}=\frac{-\frac{15}{4}}{-\frac{23}{108}-\frac{324}{108}}
Convert 3 to fraction \frac{324}{108}.
\frac{1}{2}=\frac{-\frac{15}{4}}{\frac{-23-324}{108}}
Since -\frac{23}{108} and \frac{324}{108} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}=\frac{-\frac{15}{4}}{-\frac{347}{108}}
Subtract 324 from -23 to get -347.
\frac{1}{2}=-\frac{15}{4}\left(-\frac{108}{347}\right)
Divide -\frac{15}{4} by -\frac{347}{108} by multiplying -\frac{15}{4} by the reciprocal of -\frac{347}{108}.
\frac{1}{2}=\frac{-15\left(-108\right)}{4\times 347}
Multiply -\frac{15}{4} times -\frac{108}{347} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}=\frac{1620}{1388}
Do the multiplications in the fraction \frac{-15\left(-108\right)}{4\times 347}.
\frac{1}{2}=\frac{405}{347}
Reduce the fraction \frac{1620}{1388} to lowest terms by extracting and canceling out 4.
\frac{347}{694}=\frac{810}{694}
Least common multiple of 2 and 347 is 694. Convert \frac{1}{2} and \frac{405}{347} to fractions with denominator 694.
\text{false}
Compare \frac{347}{694} and \frac{810}{694}.