Solve for x
x=-\frac{2}{5}=-0.4
Graph
Share
Copied to clipboard
2\left(x+1\right)\times \frac{1}{2}-2\left(2x-1\right)=7\left(x+1\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+1\right), the least common multiple of 2,x+1.
\left(2x+2\right)\times \frac{1}{2}-2\left(2x-1\right)=7\left(x+1\right)
Use the distributive property to multiply 2 by x+1.
x+1-2\left(2x-1\right)=7\left(x+1\right)
Use the distributive property to multiply 2x+2 by \frac{1}{2}.
x+1-4x+2=7\left(x+1\right)
Use the distributive property to multiply -2 by 2x-1.
-3x+1+2=7\left(x+1\right)
Combine x and -4x to get -3x.
-3x+3=7\left(x+1\right)
Add 1 and 2 to get 3.
-3x+3=7x+7
Use the distributive property to multiply 7 by x+1.
-3x+3-7x=7
Subtract 7x from both sides.
-10x+3=7
Combine -3x and -7x to get -10x.
-10x=7-3
Subtract 3 from both sides.
-10x=4
Subtract 3 from 7 to get 4.
x=\frac{4}{-10}
Divide both sides by -10.
x=-\frac{2}{5}
Reduce the fraction \frac{4}{-10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}