Evaluate
\frac{5}{8}=0.625
Factor
\frac{5}{2 ^ {3}} = 0.625
Share
Copied to clipboard
\frac{1}{2}-\frac{1}{2}\left(\frac{2}{4}-\frac{3}{4}\right)
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{1}{2}-\frac{1}{2}\times \frac{2-3}{4}
Since \frac{2}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}-\frac{1}{2}\left(-\frac{1}{4}\right)
Subtract 3 from 2 to get -1.
\frac{1}{2}-\frac{1\left(-1\right)}{2\times 4}
Multiply \frac{1}{2} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}-\frac{-1}{8}
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 4}.
\frac{1}{2}-\left(-\frac{1}{8}\right)
Fraction \frac{-1}{8} can be rewritten as -\frac{1}{8} by extracting the negative sign.
\frac{1}{2}+\frac{1}{8}
The opposite of -\frac{1}{8} is \frac{1}{8}.
\frac{4}{8}+\frac{1}{8}
Least common multiple of 2 and 8 is 8. Convert \frac{1}{2} and \frac{1}{8} to fractions with denominator 8.
\frac{4+1}{8}
Since \frac{4}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{5}{8}
Add 4 and 1 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}