Evaluate
\frac{19}{28}\approx 0.678571429
Factor
\frac{19}{2 ^ {2} \cdot 7} = 0.6785714285714286
Share
Copied to clipboard
\frac{1}{2}-\left(\frac{8}{28}-\frac{21}{28}-\left(\frac{5}{14}+1\right)+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Least common multiple of 7 and 4 is 28. Convert \frac{2}{7} and \frac{3}{4} to fractions with denominator 28.
\frac{1}{2}-\left(\frac{8-21}{28}-\left(\frac{5}{14}+1\right)+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Since \frac{8}{28} and \frac{21}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}-\left(-\frac{13}{28}-\left(\frac{5}{14}+1\right)+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Subtract 21 from 8 to get -13.
\frac{1}{2}-\left(-\frac{13}{28}-\left(\frac{5}{14}+\frac{14}{14}\right)+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Convert 1 to fraction \frac{14}{14}.
\frac{1}{2}-\left(-\frac{13}{28}-\frac{5+14}{14}+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Since \frac{5}{14} and \frac{14}{14} have the same denominator, add them by adding their numerators.
\frac{1}{2}-\left(-\frac{13}{28}-\frac{19}{14}+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Add 5 and 14 to get 19.
\frac{1}{2}-\left(-\frac{13}{28}-\frac{38}{28}+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Least common multiple of 28 and 14 is 28. Convert -\frac{13}{28} and \frac{19}{14} to fractions with denominator 28.
\frac{1}{2}-\left(\frac{-13-38}{28}+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Since -\frac{13}{28} and \frac{38}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}-\left(-\frac{51}{28}+\frac{1}{4}+\frac{1}{7}-\frac{3}{4}+2\right)
Subtract 38 from -13 to get -51.
\frac{1}{2}-\left(-\frac{51}{28}+\frac{7}{28}+\frac{1}{7}-\frac{3}{4}+2\right)
Least common multiple of 28 and 4 is 28. Convert -\frac{51}{28} and \frac{1}{4} to fractions with denominator 28.
\frac{1}{2}-\left(\frac{-51+7}{28}+\frac{1}{7}-\frac{3}{4}+2\right)
Since -\frac{51}{28} and \frac{7}{28} have the same denominator, add them by adding their numerators.
\frac{1}{2}-\left(\frac{-44}{28}+\frac{1}{7}-\frac{3}{4}+2\right)
Add -51 and 7 to get -44.
\frac{1}{2}-\left(-\frac{11}{7}+\frac{1}{7}-\frac{3}{4}+2\right)
Reduce the fraction \frac{-44}{28} to lowest terms by extracting and canceling out 4.
\frac{1}{2}-\left(\frac{-11+1}{7}-\frac{3}{4}+2\right)
Since -\frac{11}{7} and \frac{1}{7} have the same denominator, add them by adding their numerators.
\frac{1}{2}-\left(-\frac{10}{7}-\frac{3}{4}+2\right)
Add -11 and 1 to get -10.
\frac{1}{2}-\left(-\frac{40}{28}-\frac{21}{28}+2\right)
Least common multiple of 7 and 4 is 28. Convert -\frac{10}{7} and \frac{3}{4} to fractions with denominator 28.
\frac{1}{2}-\left(\frac{-40-21}{28}+2\right)
Since -\frac{40}{28} and \frac{21}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}-\left(-\frac{61}{28}+2\right)
Subtract 21 from -40 to get -61.
\frac{1}{2}-\left(-\frac{61}{28}+\frac{56}{28}\right)
Convert 2 to fraction \frac{56}{28}.
\frac{1}{2}-\frac{-61+56}{28}
Since -\frac{61}{28} and \frac{56}{28} have the same denominator, add them by adding their numerators.
\frac{1}{2}-\left(-\frac{5}{28}\right)
Add -61 and 56 to get -5.
\frac{1}{2}+\frac{5}{28}
The opposite of -\frac{5}{28} is \frac{5}{28}.
\frac{14}{28}+\frac{5}{28}
Least common multiple of 2 and 28 is 28. Convert \frac{1}{2} and \frac{5}{28} to fractions with denominator 28.
\frac{14+5}{28}
Since \frac{14}{28} and \frac{5}{28} have the same denominator, add them by adding their numerators.
\frac{19}{28}
Add 14 and 5 to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}