Solve for x
x\geq -13
Graph
Share
Copied to clipboard
\frac{1}{2}x+\frac{1}{2}\left(-5\right)\leq \frac{1}{3}\left(2x-1\right)
Use the distributive property to multiply \frac{1}{2} by x-5.
\frac{1}{2}x+\frac{-5}{2}\leq \frac{1}{3}\left(2x-1\right)
Multiply \frac{1}{2} and -5 to get \frac{-5}{2}.
\frac{1}{2}x-\frac{5}{2}\leq \frac{1}{3}\left(2x-1\right)
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
\frac{1}{2}x-\frac{5}{2}\leq \frac{1}{3}\times 2x+\frac{1}{3}\left(-1\right)
Use the distributive property to multiply \frac{1}{3} by 2x-1.
\frac{1}{2}x-\frac{5}{2}\leq \frac{2}{3}x+\frac{1}{3}\left(-1\right)
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{1}{2}x-\frac{5}{2}\leq \frac{2}{3}x-\frac{1}{3}
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
\frac{1}{2}x-\frac{5}{2}-\frac{2}{3}x\leq -\frac{1}{3}
Subtract \frac{2}{3}x from both sides.
-\frac{1}{6}x-\frac{5}{2}\leq -\frac{1}{3}
Combine \frac{1}{2}x and -\frac{2}{3}x to get -\frac{1}{6}x.
-\frac{1}{6}x\leq -\frac{1}{3}+\frac{5}{2}
Add \frac{5}{2} to both sides.
-\frac{1}{6}x\leq -\frac{2}{6}+\frac{15}{6}
Least common multiple of 3 and 2 is 6. Convert -\frac{1}{3} and \frac{5}{2} to fractions with denominator 6.
-\frac{1}{6}x\leq \frac{-2+15}{6}
Since -\frac{2}{6} and \frac{15}{6} have the same denominator, add them by adding their numerators.
-\frac{1}{6}x\leq \frac{13}{6}
Add -2 and 15 to get 13.
x\geq \frac{13}{6}\left(-6\right)
Multiply both sides by -6, the reciprocal of -\frac{1}{6}. Since -\frac{1}{6} is negative, the inequality direction is changed.
x\geq \frac{13\left(-6\right)}{6}
Express \frac{13}{6}\left(-6\right) as a single fraction.
x\geq \frac{-78}{6}
Multiply 13 and -6 to get -78.
x\geq -13
Divide -78 by 6 to get -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}