Solve for x
x=10
Graph
Share
Copied to clipboard
\frac{1}{2}x+\frac{1}{2}\left(-1\right)-\frac{1}{3}\left(x+3\right)=\frac{1}{6}
Use the distributive property to multiply \frac{1}{2} by x-1.
\frac{1}{2}x-\frac{1}{2}-\frac{1}{3}\left(x+3\right)=\frac{1}{6}
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{1}{2}x-\frac{1}{2}-\frac{1}{3}x-\frac{1}{3}\times 3=\frac{1}{6}
Use the distributive property to multiply -\frac{1}{3} by x+3.
\frac{1}{2}x-\frac{1}{2}-\frac{1}{3}x-1=\frac{1}{6}
Cancel out 3 and 3.
\frac{1}{6}x-\frac{1}{2}-1=\frac{1}{6}
Combine \frac{1}{2}x and -\frac{1}{3}x to get \frac{1}{6}x.
\frac{1}{6}x-\frac{1}{2}-\frac{2}{2}=\frac{1}{6}
Convert 1 to fraction \frac{2}{2}.
\frac{1}{6}x+\frac{-1-2}{2}=\frac{1}{6}
Since -\frac{1}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}x-\frac{3}{2}=\frac{1}{6}
Subtract 2 from -1 to get -3.
\frac{1}{6}x=\frac{1}{6}+\frac{3}{2}
Add \frac{3}{2} to both sides.
\frac{1}{6}x=\frac{1}{6}+\frac{9}{6}
Least common multiple of 6 and 2 is 6. Convert \frac{1}{6} and \frac{3}{2} to fractions with denominator 6.
\frac{1}{6}x=\frac{1+9}{6}
Since \frac{1}{6} and \frac{9}{6} have the same denominator, add them by adding their numerators.
\frac{1}{6}x=\frac{10}{6}
Add 1 and 9 to get 10.
\frac{1}{6}x=\frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
x=\frac{5}{3}\times 6
Multiply both sides by 6, the reciprocal of \frac{1}{6}.
x=\frac{5\times 6}{3}
Express \frac{5}{3}\times 6 as a single fraction.
x=\frac{30}{3}
Multiply 5 and 6 to get 30.
x=10
Divide 30 by 3 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}