Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(x-7-x-\left(-2\right)\right)
To find the opposite of x-2, find the opposite of each term.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(x-7-x+2\right)
The opposite of -2 is 2.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(-7+2\right)
Combine x and -x to get 0.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(-5\right)
Add -7 and 2 to get -5.
\frac{-5}{2}\left(x-1\right)\left(x-8\right)
Multiply \frac{1}{2} and -5 to get \frac{-5}{2}.
-\frac{5}{2}\left(x-1\right)\left(x-8\right)
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
\left(-\frac{5}{2}x-\frac{5}{2}\left(-1\right)\right)\left(x-8\right)
Use the distributive property to multiply -\frac{5}{2} by x-1.
\left(-\frac{5}{2}x+\frac{5}{2}\right)\left(x-8\right)
Multiply -\frac{5}{2} and -1 to get \frac{5}{2}.
-\frac{5}{2}xx-\frac{5}{2}x\left(-8\right)+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Apply the distributive property by multiplying each term of -\frac{5}{2}x+\frac{5}{2} by each term of x-8.
-\frac{5}{2}x^{2}-\frac{5}{2}x\left(-8\right)+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Multiply x and x to get x^{2}.
-\frac{5}{2}x^{2}+\frac{-5\left(-8\right)}{2}x+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Express -\frac{5}{2}\left(-8\right) as a single fraction.
-\frac{5}{2}x^{2}+\frac{40}{2}x+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Multiply -5 and -8 to get 40.
-\frac{5}{2}x^{2}+20x+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Divide 40 by 2 to get 20.
-\frac{5}{2}x^{2}+\frac{45}{2}x+\frac{5}{2}\left(-8\right)
Combine 20x and \frac{5}{2}x to get \frac{45}{2}x.
-\frac{5}{2}x^{2}+\frac{45}{2}x+\frac{5\left(-8\right)}{2}
Express \frac{5}{2}\left(-8\right) as a single fraction.
-\frac{5}{2}x^{2}+\frac{45}{2}x+\frac{-40}{2}
Multiply 5 and -8 to get -40.
-\frac{5}{2}x^{2}+\frac{45}{2}x-20
Divide -40 by 2 to get -20.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(x-7-x-\left(-2\right)\right)
To find the opposite of x-2, find the opposite of each term.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(x-7-x+2\right)
The opposite of -2 is 2.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(-7+2\right)
Combine x and -x to get 0.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(-5\right)
Add -7 and 2 to get -5.
\frac{-5}{2}\left(x-1\right)\left(x-8\right)
Multiply \frac{1}{2} and -5 to get \frac{-5}{2}.
-\frac{5}{2}\left(x-1\right)\left(x-8\right)
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
\left(-\frac{5}{2}x-\frac{5}{2}\left(-1\right)\right)\left(x-8\right)
Use the distributive property to multiply -\frac{5}{2} by x-1.
\left(-\frac{5}{2}x+\frac{5}{2}\right)\left(x-8\right)
Multiply -\frac{5}{2} and -1 to get \frac{5}{2}.
-\frac{5}{2}xx-\frac{5}{2}x\left(-8\right)+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Apply the distributive property by multiplying each term of -\frac{5}{2}x+\frac{5}{2} by each term of x-8.
-\frac{5}{2}x^{2}-\frac{5}{2}x\left(-8\right)+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Multiply x and x to get x^{2}.
-\frac{5}{2}x^{2}+\frac{-5\left(-8\right)}{2}x+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Express -\frac{5}{2}\left(-8\right) as a single fraction.
-\frac{5}{2}x^{2}+\frac{40}{2}x+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Multiply -5 and -8 to get 40.
-\frac{5}{2}x^{2}+20x+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Divide 40 by 2 to get 20.
-\frac{5}{2}x^{2}+\frac{45}{2}x+\frac{5}{2}\left(-8\right)
Combine 20x and \frac{5}{2}x to get \frac{45}{2}x.
-\frac{5}{2}x^{2}+\frac{45}{2}x+\frac{5\left(-8\right)}{2}
Express \frac{5}{2}\left(-8\right) as a single fraction.
-\frac{5}{2}x^{2}+\frac{45}{2}x+\frac{-40}{2}
Multiply 5 and -8 to get -40.
-\frac{5}{2}x^{2}+\frac{45}{2}x-20
Divide -40 by 2 to get -20.