Evaluate
\frac{5\left(1-x\right)\left(x-8\right)}{2}
Expand
-\frac{5x^{2}}{2}+\frac{45x}{2}-20
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 1 } { 2 } ( x - 1 ) ( x - 8 ) [ ( x - 7 ) - ( x - 2 ) ]
Share
Copied to clipboard
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(x-7-x-\left(-2\right)\right)
To find the opposite of x-2, find the opposite of each term.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(x-7-x+2\right)
The opposite of -2 is 2.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(-7+2\right)
Combine x and -x to get 0.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(-5\right)
Add -7 and 2 to get -5.
\frac{-5}{2}\left(x-1\right)\left(x-8\right)
Multiply \frac{1}{2} and -5 to get \frac{-5}{2}.
-\frac{5}{2}\left(x-1\right)\left(x-8\right)
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
\left(-\frac{5}{2}x-\frac{5}{2}\left(-1\right)\right)\left(x-8\right)
Use the distributive property to multiply -\frac{5}{2} by x-1.
\left(-\frac{5}{2}x+\frac{5}{2}\right)\left(x-8\right)
Multiply -\frac{5}{2} and -1 to get \frac{5}{2}.
-\frac{5}{2}xx-\frac{5}{2}x\left(-8\right)+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Apply the distributive property by multiplying each term of -\frac{5}{2}x+\frac{5}{2} by each term of x-8.
-\frac{5}{2}x^{2}-\frac{5}{2}x\left(-8\right)+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Multiply x and x to get x^{2}.
-\frac{5}{2}x^{2}+\frac{-5\left(-8\right)}{2}x+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Express -\frac{5}{2}\left(-8\right) as a single fraction.
-\frac{5}{2}x^{2}+\frac{40}{2}x+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Multiply -5 and -8 to get 40.
-\frac{5}{2}x^{2}+20x+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Divide 40 by 2 to get 20.
-\frac{5}{2}x^{2}+\frac{45}{2}x+\frac{5}{2}\left(-8\right)
Combine 20x and \frac{5}{2}x to get \frac{45}{2}x.
-\frac{5}{2}x^{2}+\frac{45}{2}x+\frac{5\left(-8\right)}{2}
Express \frac{5}{2}\left(-8\right) as a single fraction.
-\frac{5}{2}x^{2}+\frac{45}{2}x+\frac{-40}{2}
Multiply 5 and -8 to get -40.
-\frac{5}{2}x^{2}+\frac{45}{2}x-20
Divide -40 by 2 to get -20.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(x-7-x-\left(-2\right)\right)
To find the opposite of x-2, find the opposite of each term.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(x-7-x+2\right)
The opposite of -2 is 2.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(-7+2\right)
Combine x and -x to get 0.
\frac{1}{2}\left(x-1\right)\left(x-8\right)\left(-5\right)
Add -7 and 2 to get -5.
\frac{-5}{2}\left(x-1\right)\left(x-8\right)
Multiply \frac{1}{2} and -5 to get \frac{-5}{2}.
-\frac{5}{2}\left(x-1\right)\left(x-8\right)
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
\left(-\frac{5}{2}x-\frac{5}{2}\left(-1\right)\right)\left(x-8\right)
Use the distributive property to multiply -\frac{5}{2} by x-1.
\left(-\frac{5}{2}x+\frac{5}{2}\right)\left(x-8\right)
Multiply -\frac{5}{2} and -1 to get \frac{5}{2}.
-\frac{5}{2}xx-\frac{5}{2}x\left(-8\right)+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Apply the distributive property by multiplying each term of -\frac{5}{2}x+\frac{5}{2} by each term of x-8.
-\frac{5}{2}x^{2}-\frac{5}{2}x\left(-8\right)+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Multiply x and x to get x^{2}.
-\frac{5}{2}x^{2}+\frac{-5\left(-8\right)}{2}x+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Express -\frac{5}{2}\left(-8\right) as a single fraction.
-\frac{5}{2}x^{2}+\frac{40}{2}x+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Multiply -5 and -8 to get 40.
-\frac{5}{2}x^{2}+20x+\frac{5}{2}x+\frac{5}{2}\left(-8\right)
Divide 40 by 2 to get 20.
-\frac{5}{2}x^{2}+\frac{45}{2}x+\frac{5}{2}\left(-8\right)
Combine 20x and \frac{5}{2}x to get \frac{45}{2}x.
-\frac{5}{2}x^{2}+\frac{45}{2}x+\frac{5\left(-8\right)}{2}
Express \frac{5}{2}\left(-8\right) as a single fraction.
-\frac{5}{2}x^{2}+\frac{45}{2}x+\frac{-40}{2}
Multiply 5 and -8 to get -40.
-\frac{5}{2}x^{2}+\frac{45}{2}x-20
Divide -40 by 2 to get -20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}