Skip to main content
Solve for m
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\left(x^{2}-2x+1\right)-1=\frac{1}{2}m-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
\frac{1}{2}x^{2}-x+\frac{1}{2}-1=\frac{1}{2}m-1
Use the distributive property to multiply \frac{1}{2} by x^{2}-2x+1.
\frac{1}{2}x^{2}-x-\frac{1}{2}=\frac{1}{2}m-1
Subtract 1 from \frac{1}{2} to get -\frac{1}{2}.
\frac{1}{2}m-1=\frac{1}{2}x^{2}-x-\frac{1}{2}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}m=\frac{1}{2}x^{2}-x-\frac{1}{2}+1
Add 1 to both sides.
\frac{1}{2}m=\frac{1}{2}x^{2}-x+\frac{1}{2}
Add -\frac{1}{2} and 1 to get \frac{1}{2}.
\frac{1}{2}m=\frac{x^{2}}{2}-x+\frac{1}{2}
The equation is in standard form.
\frac{\frac{1}{2}m}{\frac{1}{2}}=\frac{\left(x-1\right)^{2}}{\frac{1}{2}\times 2}
Multiply both sides by 2.
m=\frac{\left(x-1\right)^{2}}{\frac{1}{2}\times 2}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
m=\left(x-1\right)^{2}
Divide \frac{\left(-1+x\right)^{2}}{2} by \frac{1}{2} by multiplying \frac{\left(-1+x\right)^{2}}{2} by the reciprocal of \frac{1}{2}.