Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\left(x^{2}-2x+1\right)=\left(x-1\right)\left(x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
\frac{1}{2}x^{2}-x+\frac{1}{2}=\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply \frac{1}{2} by x^{2}-2x+1.
\frac{1}{2}x^{2}-x+\frac{1}{2}=x^{2}-1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{2}x^{2}-x+\frac{1}{2}-x^{2}=-1
Subtract x^{2} from both sides.
-\frac{1}{2}x^{2}-x+\frac{1}{2}=-1
Combine \frac{1}{2}x^{2} and -x^{2} to get -\frac{1}{2}x^{2}.
-\frac{1}{2}x^{2}-x+\frac{1}{2}+1=0
Add 1 to both sides.
-\frac{1}{2}x^{2}-x+\frac{3}{2}=0
Add \frac{1}{2} and 1 to get \frac{3}{2}.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{1}{2}\right)\times \frac{3}{2}}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, -1 for b, and \frac{3}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+2\times \frac{3}{2}}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-\left(-1\right)±\sqrt{1+3}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times \frac{3}{2}.
x=\frac{-\left(-1\right)±\sqrt{4}}{2\left(-\frac{1}{2}\right)}
Add 1 to 3.
x=\frac{-\left(-1\right)±2}{2\left(-\frac{1}{2}\right)}
Take the square root of 4.
x=\frac{1±2}{2\left(-\frac{1}{2}\right)}
The opposite of -1 is 1.
x=\frac{1±2}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{3}{-1}
Now solve the equation x=\frac{1±2}{-1} when ± is plus. Add 1 to 2.
x=-3
Divide 3 by -1.
x=-\frac{1}{-1}
Now solve the equation x=\frac{1±2}{-1} when ± is minus. Subtract 2 from 1.
x=1
Divide -1 by -1.
x=-3 x=1
The equation is now solved.
\frac{1}{2}\left(x^{2}-2x+1\right)=\left(x-1\right)\left(x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
\frac{1}{2}x^{2}-x+\frac{1}{2}=\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply \frac{1}{2} by x^{2}-2x+1.
\frac{1}{2}x^{2}-x+\frac{1}{2}=x^{2}-1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{2}x^{2}-x+\frac{1}{2}-x^{2}=-1
Subtract x^{2} from both sides.
-\frac{1}{2}x^{2}-x+\frac{1}{2}=-1
Combine \frac{1}{2}x^{2} and -x^{2} to get -\frac{1}{2}x^{2}.
-\frac{1}{2}x^{2}-x=-1-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-\frac{1}{2}x^{2}-x=-\frac{3}{2}
Subtract \frac{1}{2} from -1 to get -\frac{3}{2}.
\frac{-\frac{1}{2}x^{2}-x}{-\frac{1}{2}}=-\frac{\frac{3}{2}}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\left(-\frac{1}{-\frac{1}{2}}\right)x=-\frac{\frac{3}{2}}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}+2x=-\frac{\frac{3}{2}}{-\frac{1}{2}}
Divide -1 by -\frac{1}{2} by multiplying -1 by the reciprocal of -\frac{1}{2}.
x^{2}+2x=3
Divide -\frac{3}{2} by -\frac{1}{2} by multiplying -\frac{3}{2} by the reciprocal of -\frac{1}{2}.
x^{2}+2x+1^{2}=3+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=3+1
Square 1.
x^{2}+2x+1=4
Add 3 to 1.
\left(x+1\right)^{2}=4
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+1=2 x+1=-2
Simplify.
x=1 x=-3
Subtract 1 from both sides of the equation.