Solve for x, h
x=2
h=13
Graph
Share
Copied to clipboard
\frac{1}{2}x+3=2x
Consider the first equation. Use the distributive property to multiply \frac{1}{2} by x+6.
\frac{1}{2}x+3-2x=0
Subtract 2x from both sides.
-\frac{3}{2}x+3=0
Combine \frac{1}{2}x and -2x to get -\frac{3}{2}x.
-\frac{3}{2}x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
x=-3\left(-\frac{2}{3}\right)
Multiply both sides by -\frac{2}{3}, the reciprocal of -\frac{3}{2}.
x=2
Multiply -3 and -\frac{2}{3} to get 2.
5-2\times 2=7\times 2-h
Consider the second equation. Insert the known values of variables into the equation.
5-4=7\times 2-h
Multiply -2 and 2 to get -4.
1=7\times 2-h
Subtract 4 from 5 to get 1.
1=14-h
Multiply 7 and 2 to get 14.
14-h=1
Swap sides so that all variable terms are on the left hand side.
-h=1-14
Subtract 14 from both sides.
-h=-13
Subtract 14 from 1 to get -13.
h=\frac{-13}{-1}
Divide both sides by -1.
h=13
Fraction \frac{-13}{-1} can be simplified to 13 by removing the negative sign from both the numerator and the denominator.
x=2 h=13
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}