Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{1}{2}x+1\right)\left(x-2\right)+\frac{1}{2}\left(x-2\right)^{2}=2x-1-1
Use the distributive property to multiply \frac{1}{2} by x+2.
\frac{1}{2}x^{2}-2+\frac{1}{2}\left(x-2\right)^{2}=2x-1-1
Use the distributive property to multiply \frac{1}{2}x+1 by x-2 and combine like terms.
\frac{1}{2}x^{2}-2+\frac{1}{2}\left(x^{2}-4x+4\right)=2x-1-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\frac{1}{2}x^{2}-2+\frac{1}{2}x^{2}-2x+2=2x-1-1
Use the distributive property to multiply \frac{1}{2} by x^{2}-4x+4.
x^{2}-2-2x+2=2x-1-1
Combine \frac{1}{2}x^{2} and \frac{1}{2}x^{2} to get x^{2}.
x^{2}-2x=2x-1-1
Add -2 and 2 to get 0.
x^{2}-2x=2x-2
Subtract 1 from -1 to get -2.
x^{2}-2x-2x=-2
Subtract 2x from both sides.
x^{2}-4x=-2
Combine -2x and -2x to get -4x.
x^{2}-4x+2=0
Add 2 to both sides.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-8}}{2}
Multiply -4 times 2.
x=\frac{-\left(-4\right)±\sqrt{8}}{2}
Add 16 to -8.
x=\frac{-\left(-4\right)±2\sqrt{2}}{2}
Take the square root of 8.
x=\frac{4±2\sqrt{2}}{2}
The opposite of -4 is 4.
x=\frac{2\sqrt{2}+4}{2}
Now solve the equation x=\frac{4±2\sqrt{2}}{2} when ± is plus. Add 4 to 2\sqrt{2}.
x=\sqrt{2}+2
Divide 4+2\sqrt{2} by 2.
x=\frac{4-2\sqrt{2}}{2}
Now solve the equation x=\frac{4±2\sqrt{2}}{2} when ± is minus. Subtract 2\sqrt{2} from 4.
x=2-\sqrt{2}
Divide 4-2\sqrt{2} by 2.
x=\sqrt{2}+2 x=2-\sqrt{2}
The equation is now solved.
\left(\frac{1}{2}x+1\right)\left(x-2\right)+\frac{1}{2}\left(x-2\right)^{2}=2x-1-1
Use the distributive property to multiply \frac{1}{2} by x+2.
\frac{1}{2}x^{2}-2+\frac{1}{2}\left(x-2\right)^{2}=2x-1-1
Use the distributive property to multiply \frac{1}{2}x+1 by x-2 and combine like terms.
\frac{1}{2}x^{2}-2+\frac{1}{2}\left(x^{2}-4x+4\right)=2x-1-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\frac{1}{2}x^{2}-2+\frac{1}{2}x^{2}-2x+2=2x-1-1
Use the distributive property to multiply \frac{1}{2} by x^{2}-4x+4.
x^{2}-2-2x+2=2x-1-1
Combine \frac{1}{2}x^{2} and \frac{1}{2}x^{2} to get x^{2}.
x^{2}-2x=2x-1-1
Add -2 and 2 to get 0.
x^{2}-2x=2x-2
Subtract 1 from -1 to get -2.
x^{2}-2x-2x=-2
Subtract 2x from both sides.
x^{2}-4x=-2
Combine -2x and -2x to get -4x.
x^{2}-4x+\left(-2\right)^{2}=-2+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-2+4
Square -2.
x^{2}-4x+4=2
Add -2 to 4.
\left(x-2\right)^{2}=2
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
x-2=\sqrt{2} x-2=-\sqrt{2}
Simplify.
x=\sqrt{2}+2 x=2-\sqrt{2}
Add 2 to both sides of the equation.