Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}\left(x+1\right)\left(x+2\right)=x^{2}
Multiply x and x to get x^{2}.
\left(\frac{1}{2}x+\frac{1}{2}\right)\left(x+2\right)=x^{2}
Use the distributive property to multiply \frac{1}{2} by x+1.
\frac{1}{2}x^{2}+\frac{3}{2}x+1=x^{2}
Use the distributive property to multiply \frac{1}{2}x+\frac{1}{2} by x+2 and combine like terms.
\frac{1}{2}x^{2}+\frac{3}{2}x+1-x^{2}=0
Subtract x^{2} from both sides.
-\frac{1}{2}x^{2}+\frac{3}{2}x+1=0
Combine \frac{1}{2}x^{2} and -x^{2} to get -\frac{1}{2}x^{2}.
x=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{1}{2}\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, \frac{3}{2} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{1}{2}\right)}}{2\left(-\frac{1}{2}\right)}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+2}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{17}{4}}}{2\left(-\frac{1}{2}\right)}
Add \frac{9}{4} to 2.
x=\frac{-\frac{3}{2}±\frac{\sqrt{17}}{2}}{2\left(-\frac{1}{2}\right)}
Take the square root of \frac{17}{4}.
x=\frac{-\frac{3}{2}±\frac{\sqrt{17}}{2}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\sqrt{17}-3}{-2}
Now solve the equation x=\frac{-\frac{3}{2}±\frac{\sqrt{17}}{2}}{-1} when ± is plus. Add -\frac{3}{2} to \frac{\sqrt{17}}{2}.
x=\frac{3-\sqrt{17}}{2}
Divide \frac{-3+\sqrt{17}}{2} by -1.
x=\frac{-\sqrt{17}-3}{-2}
Now solve the equation x=\frac{-\frac{3}{2}±\frac{\sqrt{17}}{2}}{-1} when ± is minus. Subtract \frac{\sqrt{17}}{2} from -\frac{3}{2}.
x=\frac{\sqrt{17}+3}{2}
Divide \frac{-3-\sqrt{17}}{2} by -1.
x=\frac{3-\sqrt{17}}{2} x=\frac{\sqrt{17}+3}{2}
The equation is now solved.
\frac{1}{2}\left(x+1\right)\left(x+2\right)=x^{2}
Multiply x and x to get x^{2}.
\left(\frac{1}{2}x+\frac{1}{2}\right)\left(x+2\right)=x^{2}
Use the distributive property to multiply \frac{1}{2} by x+1.
\frac{1}{2}x^{2}+\frac{3}{2}x+1=x^{2}
Use the distributive property to multiply \frac{1}{2}x+\frac{1}{2} by x+2 and combine like terms.
\frac{1}{2}x^{2}+\frac{3}{2}x+1-x^{2}=0
Subtract x^{2} from both sides.
-\frac{1}{2}x^{2}+\frac{3}{2}x+1=0
Combine \frac{1}{2}x^{2} and -x^{2} to get -\frac{1}{2}x^{2}.
-\frac{1}{2}x^{2}+\frac{3}{2}x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{-\frac{1}{2}x^{2}+\frac{3}{2}x}{-\frac{1}{2}}=-\frac{1}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{\frac{3}{2}}{-\frac{1}{2}}x=-\frac{1}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-3x=-\frac{1}{-\frac{1}{2}}
Divide \frac{3}{2} by -\frac{1}{2} by multiplying \frac{3}{2} by the reciprocal of -\frac{1}{2}.
x^{2}-3x=2
Divide -1 by -\frac{1}{2} by multiplying -1 by the reciprocal of -\frac{1}{2}.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{17}{4}
Add 2 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{17}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{17}}{2} x-\frac{3}{2}=-\frac{\sqrt{17}}{2}
Simplify.
x=\frac{\sqrt{17}+3}{2} x=\frac{3-\sqrt{17}}{2}
Add \frac{3}{2} to both sides of the equation.