Solve for x
x=1
Graph
Share
Copied to clipboard
\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}\left(x+3\right)=3-\frac{1}{3}\left(x+2\right)
Use the distributive property to multiply \frac{1}{2} by x+1.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}x+\frac{1}{4}\times 3=3-\frac{1}{3}\left(x+2\right)
Use the distributive property to multiply \frac{1}{4} by x+3.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}x+\frac{3}{4}=3-\frac{1}{3}\left(x+2\right)
Multiply \frac{1}{4} and 3 to get \frac{3}{4}.
\frac{3}{4}x+\frac{1}{2}+\frac{3}{4}=3-\frac{1}{3}\left(x+2\right)
Combine \frac{1}{2}x and \frac{1}{4}x to get \frac{3}{4}x.
\frac{3}{4}x+\frac{2}{4}+\frac{3}{4}=3-\frac{1}{3}\left(x+2\right)
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{3}{4}x+\frac{2+3}{4}=3-\frac{1}{3}\left(x+2\right)
Since \frac{2}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{3}{4}x+\frac{5}{4}=3-\frac{1}{3}\left(x+2\right)
Add 2 and 3 to get 5.
\frac{3}{4}x+\frac{5}{4}=3-\frac{1}{3}x-\frac{1}{3}\times 2
Use the distributive property to multiply -\frac{1}{3} by x+2.
\frac{3}{4}x+\frac{5}{4}=3-\frac{1}{3}x+\frac{-2}{3}
Express -\frac{1}{3}\times 2 as a single fraction.
\frac{3}{4}x+\frac{5}{4}=3-\frac{1}{3}x-\frac{2}{3}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{3}{4}x+\frac{5}{4}=\frac{9}{3}-\frac{1}{3}x-\frac{2}{3}
Convert 3 to fraction \frac{9}{3}.
\frac{3}{4}x+\frac{5}{4}=\frac{9-2}{3}-\frac{1}{3}x
Since \frac{9}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{4}x+\frac{5}{4}=\frac{7}{3}-\frac{1}{3}x
Subtract 2 from 9 to get 7.
\frac{3}{4}x+\frac{5}{4}+\frac{1}{3}x=\frac{7}{3}
Add \frac{1}{3}x to both sides.
\frac{13}{12}x+\frac{5}{4}=\frac{7}{3}
Combine \frac{3}{4}x and \frac{1}{3}x to get \frac{13}{12}x.
\frac{13}{12}x=\frac{7}{3}-\frac{5}{4}
Subtract \frac{5}{4} from both sides.
\frac{13}{12}x=\frac{28}{12}-\frac{15}{12}
Least common multiple of 3 and 4 is 12. Convert \frac{7}{3} and \frac{5}{4} to fractions with denominator 12.
\frac{13}{12}x=\frac{28-15}{12}
Since \frac{28}{12} and \frac{15}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{12}x=\frac{13}{12}
Subtract 15 from 28 to get 13.
x=\frac{13}{12}\times \frac{12}{13}
Multiply both sides by \frac{12}{13}, the reciprocal of \frac{13}{12}.
x=1
Cancel out \frac{13}{12} and its reciprocal \frac{12}{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}