Solve for x
x = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Share
Copied to clipboard
\frac{1}{2}x+\frac{1}{2}\times \frac{1}{4}=\frac{2}{3}x-\frac{1}{6}
Use the distributive property to multiply \frac{1}{2} by x+\frac{1}{4}.
\frac{1}{2}x+\frac{1\times 1}{2\times 4}=\frac{2}{3}x-\frac{1}{6}
Multiply \frac{1}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x+\frac{1}{8}=\frac{2}{3}x-\frac{1}{6}
Do the multiplications in the fraction \frac{1\times 1}{2\times 4}.
\frac{1}{2}x+\frac{1}{8}-\frac{2}{3}x=-\frac{1}{6}
Subtract \frac{2}{3}x from both sides.
-\frac{1}{6}x+\frac{1}{8}=-\frac{1}{6}
Combine \frac{1}{2}x and -\frac{2}{3}x to get -\frac{1}{6}x.
-\frac{1}{6}x=-\frac{1}{6}-\frac{1}{8}
Subtract \frac{1}{8} from both sides.
-\frac{1}{6}x=-\frac{4}{24}-\frac{3}{24}
Least common multiple of 6 and 8 is 24. Convert -\frac{1}{6} and \frac{1}{8} to fractions with denominator 24.
-\frac{1}{6}x=\frac{-4-3}{24}
Since -\frac{4}{24} and \frac{3}{24} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{6}x=-\frac{7}{24}
Subtract 3 from -4 to get -7.
x=-\frac{7}{24}\left(-6\right)
Multiply both sides by -6, the reciprocal of -\frac{1}{6}.
x=\frac{-7\left(-6\right)}{24}
Express -\frac{7}{24}\left(-6\right) as a single fraction.
x=\frac{42}{24}
Multiply -7 and -6 to get 42.
x=\frac{7}{4}
Reduce the fraction \frac{42}{24} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}