Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x+\frac{1}{2}\times \frac{1}{3}+\frac{1}{4}\left(\frac{2}{3}x-\frac{1}{6}\right)=x
Use the distributive property to multiply \frac{1}{2} by x+\frac{1}{3}.
\frac{1}{2}x+\frac{1\times 1}{2\times 3}+\frac{1}{4}\left(\frac{2}{3}x-\frac{1}{6}\right)=x
Multiply \frac{1}{2} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{4}\left(\frac{2}{3}x-\frac{1}{6}\right)=x
Do the multiplications in the fraction \frac{1\times 1}{2\times 3}.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{4}\times \frac{2}{3}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Use the distributive property to multiply \frac{1}{4} by \frac{2}{3}x-\frac{1}{6}.
\frac{1}{2}x+\frac{1}{6}+\frac{1\times 2}{4\times 3}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Multiply \frac{1}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x+\frac{1}{6}+\frac{2}{12}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Do the multiplications in the fraction \frac{1\times 2}{4\times 3}.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x+\frac{1\left(-1\right)}{4\times 6}=x
Multiply \frac{1}{4} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x+\frac{-1}{24}=x
Do the multiplications in the fraction \frac{1\left(-1\right)}{4\times 6}.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x-\frac{1}{24}=x
Fraction \frac{-1}{24} can be rewritten as -\frac{1}{24} by extracting the negative sign.
\frac{2}{3}x+\frac{1}{6}-\frac{1}{24}=x
Combine \frac{1}{2}x and \frac{1}{6}x to get \frac{2}{3}x.
\frac{2}{3}x+\frac{4}{24}-\frac{1}{24}=x
Least common multiple of 6 and 24 is 24. Convert \frac{1}{6} and \frac{1}{24} to fractions with denominator 24.
\frac{2}{3}x+\frac{4-1}{24}=x
Since \frac{4}{24} and \frac{1}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}x+\frac{3}{24}=x
Subtract 1 from 4 to get 3.
\frac{2}{3}x+\frac{1}{8}=x
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{2}{3}x+\frac{1}{8}-x=0
Subtract x from both sides.
-\frac{1}{3}x+\frac{1}{8}=0
Combine \frac{2}{3}x and -x to get -\frac{1}{3}x.
-\frac{1}{3}x=-\frac{1}{8}
Subtract \frac{1}{8} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{1}{8}\left(-3\right)
Multiply both sides by -3, the reciprocal of -\frac{1}{3}.
x=\frac{-\left(-3\right)}{8}
Express -\frac{1}{8}\left(-3\right) as a single fraction.
x=\frac{3}{8}
Multiply -1 and -3 to get 3.