Solve for x
x=\frac{3}{8}=0.375
Graph
Share
Copied to clipboard
\frac{1}{2}x+\frac{1}{2}\times \frac{1}{3}+\frac{1}{4}\left(\frac{2}{3}x-\frac{1}{6}\right)=x
Use the distributive property to multiply \frac{1}{2} by x+\frac{1}{3}.
\frac{1}{2}x+\frac{1\times 1}{2\times 3}+\frac{1}{4}\left(\frac{2}{3}x-\frac{1}{6}\right)=x
Multiply \frac{1}{2} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{4}\left(\frac{2}{3}x-\frac{1}{6}\right)=x
Do the multiplications in the fraction \frac{1\times 1}{2\times 3}.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{4}\times \frac{2}{3}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Use the distributive property to multiply \frac{1}{4} by \frac{2}{3}x-\frac{1}{6}.
\frac{1}{2}x+\frac{1}{6}+\frac{1\times 2}{4\times 3}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Multiply \frac{1}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x+\frac{1}{6}+\frac{2}{12}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Do the multiplications in the fraction \frac{1\times 2}{4\times 3}.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x+\frac{1\left(-1\right)}{4\times 6}=x
Multiply \frac{1}{4} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x+\frac{-1}{24}=x
Do the multiplications in the fraction \frac{1\left(-1\right)}{4\times 6}.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x-\frac{1}{24}=x
Fraction \frac{-1}{24} can be rewritten as -\frac{1}{24} by extracting the negative sign.
\frac{2}{3}x+\frac{1}{6}-\frac{1}{24}=x
Combine \frac{1}{2}x and \frac{1}{6}x to get \frac{2}{3}x.
\frac{2}{3}x+\frac{4}{24}-\frac{1}{24}=x
Least common multiple of 6 and 24 is 24. Convert \frac{1}{6} and \frac{1}{24} to fractions with denominator 24.
\frac{2}{3}x+\frac{4-1}{24}=x
Since \frac{4}{24} and \frac{1}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}x+\frac{3}{24}=x
Subtract 1 from 4 to get 3.
\frac{2}{3}x+\frac{1}{8}=x
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{2}{3}x+\frac{1}{8}-x=0
Subtract x from both sides.
-\frac{1}{3}x+\frac{1}{8}=0
Combine \frac{2}{3}x and -x to get -\frac{1}{3}x.
-\frac{1}{3}x=-\frac{1}{8}
Subtract \frac{1}{8} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{1}{8}\left(-3\right)
Multiply both sides by -3, the reciprocal of -\frac{1}{3}.
x=\frac{-\left(-3\right)}{8}
Express -\frac{1}{8}\left(-3\right) as a single fraction.
x=\frac{3}{8}
Multiply -1 and -3 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}