Solve for x
x=-1
x=\frac{1}{4}=0.25
Graph
Share
Copied to clipboard
\frac{1}{2}\left(x^{2}+x+\frac{1}{4}\right)-\frac{1}{8}\left(x+\frac{1}{2}\right)-\frac{3}{16}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{1}{2}\right)^{2}.
\frac{1}{2}x^{2}+\frac{1}{2}x+\frac{1}{8}-\frac{1}{8}\left(x+\frac{1}{2}\right)-\frac{3}{16}=0
Use the distributive property to multiply \frac{1}{2} by x^{2}+x+\frac{1}{4}.
\frac{1}{2}x^{2}+\frac{1}{2}x+\frac{1}{8}-\frac{1}{8}x-\frac{1}{16}-\frac{3}{16}=0
Use the distributive property to multiply -\frac{1}{8} by x+\frac{1}{2}.
\frac{1}{2}x^{2}+\frac{3}{8}x+\frac{1}{8}-\frac{1}{16}-\frac{3}{16}=0
Combine \frac{1}{2}x and -\frac{1}{8}x to get \frac{3}{8}x.
\frac{1}{2}x^{2}+\frac{3}{8}x+\frac{1}{16}-\frac{3}{16}=0
Subtract \frac{1}{16} from \frac{1}{8} to get \frac{1}{16}.
\frac{1}{2}x^{2}+\frac{3}{8}x-\frac{1}{8}=0
Subtract \frac{3}{16} from \frac{1}{16} to get -\frac{1}{8}.
x=\frac{-\frac{3}{8}±\sqrt{\left(\frac{3}{8}\right)^{2}-4\times \frac{1}{2}\left(-\frac{1}{8}\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, \frac{3}{8} for b, and -\frac{1}{8} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-4\times \frac{1}{2}\left(-\frac{1}{8}\right)}}{2\times \frac{1}{2}}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-2\left(-\frac{1}{8}\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}+\frac{1}{4}}}{2\times \frac{1}{2}}
Multiply -2 times -\frac{1}{8}.
x=\frac{-\frac{3}{8}±\sqrt{\frac{25}{64}}}{2\times \frac{1}{2}}
Add \frac{9}{64} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{3}{8}±\frac{5}{8}}{2\times \frac{1}{2}}
Take the square root of \frac{25}{64}.
x=\frac{-\frac{3}{8}±\frac{5}{8}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\frac{1}{4}}{1}
Now solve the equation x=\frac{-\frac{3}{8}±\frac{5}{8}}{1} when ± is plus. Add -\frac{3}{8} to \frac{5}{8} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{4}
Divide \frac{1}{4} by 1.
x=-\frac{1}{1}
Now solve the equation x=\frac{-\frac{3}{8}±\frac{5}{8}}{1} when ± is minus. Subtract \frac{5}{8} from -\frac{3}{8} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-1
Divide -1 by 1.
x=\frac{1}{4} x=-1
The equation is now solved.
\frac{1}{2}\left(x^{2}+x+\frac{1}{4}\right)-\frac{1}{8}\left(x+\frac{1}{2}\right)-\frac{3}{16}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{1}{2}\right)^{2}.
\frac{1}{2}x^{2}+\frac{1}{2}x+\frac{1}{8}-\frac{1}{8}\left(x+\frac{1}{2}\right)-\frac{3}{16}=0
Use the distributive property to multiply \frac{1}{2} by x^{2}+x+\frac{1}{4}.
\frac{1}{2}x^{2}+\frac{1}{2}x+\frac{1}{8}-\frac{1}{8}x-\frac{1}{16}-\frac{3}{16}=0
Use the distributive property to multiply -\frac{1}{8} by x+\frac{1}{2}.
\frac{1}{2}x^{2}+\frac{3}{8}x+\frac{1}{8}-\frac{1}{16}-\frac{3}{16}=0
Combine \frac{1}{2}x and -\frac{1}{8}x to get \frac{3}{8}x.
\frac{1}{2}x^{2}+\frac{3}{8}x+\frac{1}{16}-\frac{3}{16}=0
Subtract \frac{1}{16} from \frac{1}{8} to get \frac{1}{16}.
\frac{1}{2}x^{2}+\frac{3}{8}x-\frac{1}{8}=0
Subtract \frac{3}{16} from \frac{1}{16} to get -\frac{1}{8}.
\frac{1}{2}x^{2}+\frac{3}{8}x=\frac{1}{8}
Add \frac{1}{8} to both sides. Anything plus zero gives itself.
\frac{\frac{1}{2}x^{2}+\frac{3}{8}x}{\frac{1}{2}}=\frac{\frac{1}{8}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{\frac{3}{8}}{\frac{1}{2}}x=\frac{\frac{1}{8}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+\frac{3}{4}x=\frac{\frac{1}{8}}{\frac{1}{2}}
Divide \frac{3}{8} by \frac{1}{2} by multiplying \frac{3}{8} by the reciprocal of \frac{1}{2}.
x^{2}+\frac{3}{4}x=\frac{1}{4}
Divide \frac{1}{8} by \frac{1}{2} by multiplying \frac{1}{8} by the reciprocal of \frac{1}{2}.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=\frac{1}{4}+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{1}{4}+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{25}{64}
Add \frac{1}{4} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{8}\right)^{2}=\frac{25}{64}
Factor x^{2}+\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
Take the square root of both sides of the equation.
x+\frac{3}{8}=\frac{5}{8} x+\frac{3}{8}=-\frac{5}{8}
Simplify.
x=\frac{1}{4} x=-1
Subtract \frac{3}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}