Solve for u
u=-\frac{2}{3}\approx -0.666666667
Share
Copied to clipboard
\frac{1}{2}u+\frac{1}{2}\left(-3\right)=2u-\frac{1}{2}
Use the distributive property to multiply \frac{1}{2} by u-3.
\frac{1}{2}u+\frac{-3}{2}=2u-\frac{1}{2}
Multiply \frac{1}{2} and -3 to get \frac{-3}{2}.
\frac{1}{2}u-\frac{3}{2}=2u-\frac{1}{2}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{1}{2}u-\frac{3}{2}-2u=-\frac{1}{2}
Subtract 2u from both sides.
-\frac{3}{2}u-\frac{3}{2}=-\frac{1}{2}
Combine \frac{1}{2}u and -2u to get -\frac{3}{2}u.
-\frac{3}{2}u=-\frac{1}{2}+\frac{3}{2}
Add \frac{3}{2} to both sides.
-\frac{3}{2}u=\frac{-1+3}{2}
Since -\frac{1}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
-\frac{3}{2}u=\frac{2}{2}
Add -1 and 3 to get 2.
-\frac{3}{2}u=1
Divide 2 by 2 to get 1.
u=1\left(-\frac{2}{3}\right)
Multiply both sides by -\frac{2}{3}, the reciprocal of -\frac{3}{2}.
u=-\frac{2}{3}
Multiply 1 and -\frac{2}{3} to get -\frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}