Solve for a
a=-\left(c-2b\right)
Solve for b
b=\frac{a+c}{2}
Share
Copied to clipboard
\frac{1}{2}c+\frac{1}{2}a=b
Use the distributive property to multiply \frac{1}{2} by c+a.
\frac{1}{2}a=b-\frac{1}{2}c
Subtract \frac{1}{2}c from both sides.
\frac{1}{2}a=-\frac{c}{2}+b
The equation is in standard form.
\frac{\frac{1}{2}a}{\frac{1}{2}}=\frac{-\frac{c}{2}+b}{\frac{1}{2}}
Multiply both sides by 2.
a=\frac{-\frac{c}{2}+b}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
a=2b-c
Divide b-\frac{c}{2} by \frac{1}{2} by multiplying b-\frac{c}{2} by the reciprocal of \frac{1}{2}.
\frac{1}{2}c+\frac{1}{2}a=b
Use the distributive property to multiply \frac{1}{2} by c+a.
b=\frac{1}{2}c+\frac{1}{2}a
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}