Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}b+\frac{1}{2}c+1000b=\frac{1}{4}\left(a+c\right)+2a
Use the distributive property to multiply \frac{1}{2} by b+c.
\frac{2001}{2}b+\frac{1}{2}c=\frac{1}{4}\left(a+c\right)+2a
Combine \frac{1}{2}b and 1000b to get \frac{2001}{2}b.
\frac{2001}{2}b+\frac{1}{2}c=\frac{1}{4}a+\frac{1}{4}c+2a
Use the distributive property to multiply \frac{1}{4} by a+c.
\frac{2001}{2}b+\frac{1}{2}c=\frac{9}{4}a+\frac{1}{4}c
Combine \frac{1}{4}a and 2a to get \frac{9}{4}a.
\frac{9}{4}a+\frac{1}{4}c=\frac{2001}{2}b+\frac{1}{2}c
Swap sides so that all variable terms are on the left hand side.
\frac{9}{4}a=\frac{2001}{2}b+\frac{1}{2}c-\frac{1}{4}c
Subtract \frac{1}{4}c from both sides.
\frac{9}{4}a=\frac{2001}{2}b+\frac{1}{4}c
Combine \frac{1}{2}c and -\frac{1}{4}c to get \frac{1}{4}c.
\frac{9}{4}a=\frac{c}{4}+\frac{2001b}{2}
The equation is in standard form.
\frac{\frac{9}{4}a}{\frac{9}{4}}=\frac{\frac{c}{4}+\frac{2001b}{2}}{\frac{9}{4}}
Divide both sides of the equation by \frac{9}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{\frac{c}{4}+\frac{2001b}{2}}{\frac{9}{4}}
Dividing by \frac{9}{4} undoes the multiplication by \frac{9}{4}.
a=\frac{c}{9}+\frac{1334b}{3}
Divide \frac{2001b}{2}+\frac{c}{4} by \frac{9}{4} by multiplying \frac{2001b}{2}+\frac{c}{4} by the reciprocal of \frac{9}{4}.
\frac{1}{2}b+\frac{1}{2}c+1000b=\frac{1}{4}\left(a+c\right)+2a
Use the distributive property to multiply \frac{1}{2} by b+c.
\frac{2001}{2}b+\frac{1}{2}c=\frac{1}{4}\left(a+c\right)+2a
Combine \frac{1}{2}b and 1000b to get \frac{2001}{2}b.
\frac{2001}{2}b+\frac{1}{2}c=\frac{1}{4}a+\frac{1}{4}c+2a
Use the distributive property to multiply \frac{1}{4} by a+c.
\frac{2001}{2}b+\frac{1}{2}c=\frac{9}{4}a+\frac{1}{4}c
Combine \frac{1}{4}a and 2a to get \frac{9}{4}a.
\frac{2001}{2}b=\frac{9}{4}a+\frac{1}{4}c-\frac{1}{2}c
Subtract \frac{1}{2}c from both sides.
\frac{2001}{2}b=\frac{9}{4}a-\frac{1}{4}c
Combine \frac{1}{4}c and -\frac{1}{2}c to get -\frac{1}{4}c.
\frac{2001}{2}b=\frac{9a-c}{4}
The equation is in standard form.
\frac{\frac{2001}{2}b}{\frac{2001}{2}}=\frac{9a-c}{4\times \frac{2001}{2}}
Divide both sides of the equation by \frac{2001}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{9a-c}{4\times \frac{2001}{2}}
Dividing by \frac{2001}{2} undoes the multiplication by \frac{2001}{2}.
b=\frac{3a}{1334}-\frac{c}{4002}
Divide \frac{9a-c}{4} by \frac{2001}{2} by multiplying \frac{9a-c}{4} by the reciprocal of \frac{2001}{2}.