Solve for a
a=\frac{4002b+c}{9}
Solve for b
b=\frac{3a}{1334}-\frac{c}{4002}
Share
Copied to clipboard
\frac{1}{2}b+\frac{1}{2}c+1000b=\frac{1}{4}\left(a+c\right)+2a
Use the distributive property to multiply \frac{1}{2} by b+c.
\frac{2001}{2}b+\frac{1}{2}c=\frac{1}{4}\left(a+c\right)+2a
Combine \frac{1}{2}b and 1000b to get \frac{2001}{2}b.
\frac{2001}{2}b+\frac{1}{2}c=\frac{1}{4}a+\frac{1}{4}c+2a
Use the distributive property to multiply \frac{1}{4} by a+c.
\frac{2001}{2}b+\frac{1}{2}c=\frac{9}{4}a+\frac{1}{4}c
Combine \frac{1}{4}a and 2a to get \frac{9}{4}a.
\frac{9}{4}a+\frac{1}{4}c=\frac{2001}{2}b+\frac{1}{2}c
Swap sides so that all variable terms are on the left hand side.
\frac{9}{4}a=\frac{2001}{2}b+\frac{1}{2}c-\frac{1}{4}c
Subtract \frac{1}{4}c from both sides.
\frac{9}{4}a=\frac{2001}{2}b+\frac{1}{4}c
Combine \frac{1}{2}c and -\frac{1}{4}c to get \frac{1}{4}c.
\frac{9}{4}a=\frac{c}{4}+\frac{2001b}{2}
The equation is in standard form.
\frac{\frac{9}{4}a}{\frac{9}{4}}=\frac{\frac{c}{4}+\frac{2001b}{2}}{\frac{9}{4}}
Divide both sides of the equation by \frac{9}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{\frac{c}{4}+\frac{2001b}{2}}{\frac{9}{4}}
Dividing by \frac{9}{4} undoes the multiplication by \frac{9}{4}.
a=\frac{c}{9}+\frac{1334b}{3}
Divide \frac{2001b}{2}+\frac{c}{4} by \frac{9}{4} by multiplying \frac{2001b}{2}+\frac{c}{4} by the reciprocal of \frac{9}{4}.
\frac{1}{2}b+\frac{1}{2}c+1000b=\frac{1}{4}\left(a+c\right)+2a
Use the distributive property to multiply \frac{1}{2} by b+c.
\frac{2001}{2}b+\frac{1}{2}c=\frac{1}{4}\left(a+c\right)+2a
Combine \frac{1}{2}b and 1000b to get \frac{2001}{2}b.
\frac{2001}{2}b+\frac{1}{2}c=\frac{1}{4}a+\frac{1}{4}c+2a
Use the distributive property to multiply \frac{1}{4} by a+c.
\frac{2001}{2}b+\frac{1}{2}c=\frac{9}{4}a+\frac{1}{4}c
Combine \frac{1}{4}a and 2a to get \frac{9}{4}a.
\frac{2001}{2}b=\frac{9}{4}a+\frac{1}{4}c-\frac{1}{2}c
Subtract \frac{1}{2}c from both sides.
\frac{2001}{2}b=\frac{9}{4}a-\frac{1}{4}c
Combine \frac{1}{4}c and -\frac{1}{2}c to get -\frac{1}{4}c.
\frac{2001}{2}b=\frac{9a-c}{4}
The equation is in standard form.
\frac{\frac{2001}{2}b}{\frac{2001}{2}}=\frac{9a-c}{4\times \frac{2001}{2}}
Divide both sides of the equation by \frac{2001}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{9a-c}{4\times \frac{2001}{2}}
Dividing by \frac{2001}{2} undoes the multiplication by \frac{2001}{2}.
b=\frac{3a}{1334}-\frac{c}{4002}
Divide \frac{9a-c}{4} by \frac{2001}{2} by multiplying \frac{9a-c}{4} by the reciprocal of \frac{2001}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}