Solve for x
x=30
x=50
Graph
Share
Copied to clipboard
\left(\frac{1}{2}\times 80+\frac{1}{2}\left(-1\right)x\right)x=750
Use the distributive property to multiply \frac{1}{2} by 80-x.
\left(\frac{80}{2}+\frac{1}{2}\left(-1\right)x\right)x=750
Multiply \frac{1}{2} and 80 to get \frac{80}{2}.
\left(40+\frac{1}{2}\left(-1\right)x\right)x=750
Divide 80 by 2 to get 40.
\left(40-\frac{1}{2}x\right)x=750
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
40x-\frac{1}{2}xx=750
Use the distributive property to multiply 40-\frac{1}{2}x by x.
40x-\frac{1}{2}x^{2}=750
Multiply x and x to get x^{2}.
40x-\frac{1}{2}x^{2}-750=0
Subtract 750 from both sides.
-\frac{1}{2}x^{2}+40x-750=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{40^{2}-4\left(-\frac{1}{2}\right)\left(-750\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 40 for b, and -750 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-\frac{1}{2}\right)\left(-750\right)}}{2\left(-\frac{1}{2}\right)}
Square 40.
x=\frac{-40±\sqrt{1600+2\left(-750\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-40±\sqrt{1600-1500}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -750.
x=\frac{-40±\sqrt{100}}{2\left(-\frac{1}{2}\right)}
Add 1600 to -1500.
x=\frac{-40±10}{2\left(-\frac{1}{2}\right)}
Take the square root of 100.
x=\frac{-40±10}{-1}
Multiply 2 times -\frac{1}{2}.
x=-\frac{30}{-1}
Now solve the equation x=\frac{-40±10}{-1} when ± is plus. Add -40 to 10.
x=30
Divide -30 by -1.
x=-\frac{50}{-1}
Now solve the equation x=\frac{-40±10}{-1} when ± is minus. Subtract 10 from -40.
x=50
Divide -50 by -1.
x=30 x=50
The equation is now solved.
\left(\frac{1}{2}\times 80+\frac{1}{2}\left(-1\right)x\right)x=750
Use the distributive property to multiply \frac{1}{2} by 80-x.
\left(\frac{80}{2}+\frac{1}{2}\left(-1\right)x\right)x=750
Multiply \frac{1}{2} and 80 to get \frac{80}{2}.
\left(40+\frac{1}{2}\left(-1\right)x\right)x=750
Divide 80 by 2 to get 40.
\left(40-\frac{1}{2}x\right)x=750
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
40x-\frac{1}{2}xx=750
Use the distributive property to multiply 40-\frac{1}{2}x by x.
40x-\frac{1}{2}x^{2}=750
Multiply x and x to get x^{2}.
-\frac{1}{2}x^{2}+40x=750
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+40x}{-\frac{1}{2}}=\frac{750}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{40}{-\frac{1}{2}}x=\frac{750}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-80x=\frac{750}{-\frac{1}{2}}
Divide 40 by -\frac{1}{2} by multiplying 40 by the reciprocal of -\frac{1}{2}.
x^{2}-80x=-1500
Divide 750 by -\frac{1}{2} by multiplying 750 by the reciprocal of -\frac{1}{2}.
x^{2}-80x+\left(-40\right)^{2}=-1500+\left(-40\right)^{2}
Divide -80, the coefficient of the x term, by 2 to get -40. Then add the square of -40 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-80x+1600=-1500+1600
Square -40.
x^{2}-80x+1600=100
Add -1500 to 1600.
\left(x-40\right)^{2}=100
Factor x^{2}-80x+1600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-40\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
x-40=10 x-40=-10
Simplify.
x=50 x=30
Add 40 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}