Solve for m
m=-1-\frac{1}{2}i=-1-0.5i
m=-1+\frac{1}{2}i=-1+0.5i
Share
Copied to clipboard
8-2\left(m+1\right)^{2}+10-\left(m+1\right)^{2}=\frac{75}{8}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
8-2\left(m+1\right)^{2}+10-\left(m+1\right)^{2}=\frac{75}{4}
Multiply \frac{75}{8} and 2 to get \frac{75}{4}.
8-2\left(m^{2}+2m+1\right)+10-\left(m+1\right)^{2}=\frac{75}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+1\right)^{2}.
8-2m^{2}-4m-2+10-\left(m+1\right)^{2}=\frac{75}{4}
Use the distributive property to multiply -2 by m^{2}+2m+1.
6-2m^{2}-4m+10-\left(m+1\right)^{2}=\frac{75}{4}
Subtract 2 from 8 to get 6.
16-2m^{2}-4m-\left(m+1\right)^{2}=\frac{75}{4}
Add 6 and 10 to get 16.
16-2m^{2}-4m-\left(m^{2}+2m+1\right)=\frac{75}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+1\right)^{2}.
16-2m^{2}-4m-m^{2}-2m-1=\frac{75}{4}
To find the opposite of m^{2}+2m+1, find the opposite of each term.
16-3m^{2}-4m-2m-1=\frac{75}{4}
Combine -2m^{2} and -m^{2} to get -3m^{2}.
16-3m^{2}-6m-1=\frac{75}{4}
Combine -4m and -2m to get -6m.
15-3m^{2}-6m=\frac{75}{4}
Subtract 1 from 16 to get 15.
15-3m^{2}-6m-\frac{75}{4}=0
Subtract \frac{75}{4} from both sides.
-\frac{15}{4}-3m^{2}-6m=0
Subtract \frac{75}{4} from 15 to get -\frac{15}{4}.
-3m^{2}-6m-\frac{15}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\left(-\frac{15}{4}\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -6 for b, and -\frac{15}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\left(-\frac{15}{4}\right)}}{2\left(-3\right)}
Square -6.
m=\frac{-\left(-6\right)±\sqrt{36+12\left(-\frac{15}{4}\right)}}{2\left(-3\right)}
Multiply -4 times -3.
m=\frac{-\left(-6\right)±\sqrt{36-45}}{2\left(-3\right)}
Multiply 12 times -\frac{15}{4}.
m=\frac{-\left(-6\right)±\sqrt{-9}}{2\left(-3\right)}
Add 36 to -45.
m=\frac{-\left(-6\right)±3i}{2\left(-3\right)}
Take the square root of -9.
m=\frac{6±3i}{2\left(-3\right)}
The opposite of -6 is 6.
m=\frac{6±3i}{-6}
Multiply 2 times -3.
m=\frac{6+3i}{-6}
Now solve the equation m=\frac{6±3i}{-6} when ± is plus. Add 6 to 3i.
m=-1-\frac{1}{2}i
Divide 6+3i by -6.
m=\frac{6-3i}{-6}
Now solve the equation m=\frac{6±3i}{-6} when ± is minus. Subtract 3i from 6.
m=-1+\frac{1}{2}i
Divide 6-3i by -6.
m=-1-\frac{1}{2}i m=-1+\frac{1}{2}i
The equation is now solved.
8-2\left(m+1\right)^{2}+10-\left(m+1\right)^{2}=\frac{75}{8}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
8-2\left(m+1\right)^{2}+10-\left(m+1\right)^{2}=\frac{75}{4}
Multiply \frac{75}{8} and 2 to get \frac{75}{4}.
8-2\left(m^{2}+2m+1\right)+10-\left(m+1\right)^{2}=\frac{75}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+1\right)^{2}.
8-2m^{2}-4m-2+10-\left(m+1\right)^{2}=\frac{75}{4}
Use the distributive property to multiply -2 by m^{2}+2m+1.
6-2m^{2}-4m+10-\left(m+1\right)^{2}=\frac{75}{4}
Subtract 2 from 8 to get 6.
16-2m^{2}-4m-\left(m+1\right)^{2}=\frac{75}{4}
Add 6 and 10 to get 16.
16-2m^{2}-4m-\left(m^{2}+2m+1\right)=\frac{75}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+1\right)^{2}.
16-2m^{2}-4m-m^{2}-2m-1=\frac{75}{4}
To find the opposite of m^{2}+2m+1, find the opposite of each term.
16-3m^{2}-4m-2m-1=\frac{75}{4}
Combine -2m^{2} and -m^{2} to get -3m^{2}.
16-3m^{2}-6m-1=\frac{75}{4}
Combine -4m and -2m to get -6m.
15-3m^{2}-6m=\frac{75}{4}
Subtract 1 from 16 to get 15.
-3m^{2}-6m=\frac{75}{4}-15
Subtract 15 from both sides.
-3m^{2}-6m=\frac{15}{4}
Subtract 15 from \frac{75}{4} to get \frac{15}{4}.
\frac{-3m^{2}-6m}{-3}=\frac{\frac{15}{4}}{-3}
Divide both sides by -3.
m^{2}+\left(-\frac{6}{-3}\right)m=\frac{\frac{15}{4}}{-3}
Dividing by -3 undoes the multiplication by -3.
m^{2}+2m=\frac{\frac{15}{4}}{-3}
Divide -6 by -3.
m^{2}+2m=-\frac{5}{4}
Divide \frac{15}{4} by -3.
m^{2}+2m+1^{2}=-\frac{5}{4}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+2m+1=-\frac{5}{4}+1
Square 1.
m^{2}+2m+1=-\frac{1}{4}
Add -\frac{5}{4} to 1.
\left(m+1\right)^{2}=-\frac{1}{4}
Factor m^{2}+2m+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+1\right)^{2}}=\sqrt{-\frac{1}{4}}
Take the square root of both sides of the equation.
m+1=\frac{1}{2}i m+1=-\frac{1}{2}i
Simplify.
m=-1+\frac{1}{2}i m=-1-\frac{1}{2}i
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}