Evaluate
14-38i
Real Part
14
Share
Copied to clipboard
\left(\frac{1}{2}\times 8+\frac{1}{2}\times \left(-10i\right)\right)\times 2\left(3-i\right)
Multiply \frac{1}{2} times 8-10i.
\left(4-5i\right)\times 2\left(3-i\right)
Do the multiplications.
\left(4\times 2-5i\times 2\right)\left(3-i\right)
Multiply 4-5i times 2.
\left(8-10i\right)\left(3-i\right)
Do the multiplications.
8\times 3+8\left(-i\right)-10i\times 3-10\left(-1\right)i^{2}
Multiply complex numbers 8-10i and 3-i like you multiply binomials.
8\times 3+8\left(-i\right)-10i\times 3-10\left(-1\right)\left(-1\right)
By definition, i^{2} is -1.
24-8i-30i-10
Do the multiplications.
24-10+\left(-8-30\right)i
Combine the real and imaginary parts.
14-38i
Do the additions.
Re(\left(\frac{1}{2}\times 8+\frac{1}{2}\times \left(-10i\right)\right)\times 2\left(3-i\right))
Multiply \frac{1}{2} times 8-10i.
Re(\left(4-5i\right)\times 2\left(3-i\right))
Do the multiplications in \frac{1}{2}\times 8+\frac{1}{2}\times \left(-10i\right).
Re(\left(4\times 2-5i\times 2\right)\left(3-i\right))
Multiply 4-5i times 2.
Re(\left(8-10i\right)\left(3-i\right))
Do the multiplications in 4\times 2-5i\times 2.
Re(8\times 3+8\left(-i\right)-10i\times 3-10\left(-1\right)i^{2})
Multiply complex numbers 8-10i and 3-i like you multiply binomials.
Re(8\times 3+8\left(-i\right)-10i\times 3-10\left(-1\right)\left(-1\right))
By definition, i^{2} is -1.
Re(24-8i-30i-10)
Do the multiplications in 8\times 3+8\left(-i\right)-10i\times 3-10\left(-1\right)\left(-1\right).
Re(24-10+\left(-8-30\right)i)
Combine the real and imaginary parts in 24-8i-30i-10.
Re(14-38i)
Do the additions in 24-10+\left(-8-30\right)i.
14
The real part of 14-38i is 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}