Evaluate
\frac{x+5}{6}
Expand
\frac{x+5}{6}
Graph
Share
Copied to clipboard
\frac{1}{2}\times 5x+\frac{1}{2}\left(-1\right)-\frac{1}{3}\left(7x-4\right)
Use the distributive property to multiply \frac{1}{2} by 5x-1.
\frac{5}{2}x+\frac{1}{2}\left(-1\right)-\frac{1}{3}\left(7x-4\right)
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\frac{5}{2}x-\frac{1}{2}-\frac{1}{3}\left(7x-4\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{5}{2}x-\frac{1}{2}-\frac{1}{3}\times 7x-\frac{1}{3}\left(-4\right)
Use the distributive property to multiply -\frac{1}{3} by 7x-4.
\frac{5}{2}x-\frac{1}{2}+\frac{-7}{3}x-\frac{1}{3}\left(-4\right)
Express -\frac{1}{3}\times 7 as a single fraction.
\frac{5}{2}x-\frac{1}{2}-\frac{7}{3}x-\frac{1}{3}\left(-4\right)
Fraction \frac{-7}{3} can be rewritten as -\frac{7}{3} by extracting the negative sign.
\frac{5}{2}x-\frac{1}{2}-\frac{7}{3}x+\frac{-\left(-4\right)}{3}
Express -\frac{1}{3}\left(-4\right) as a single fraction.
\frac{5}{2}x-\frac{1}{2}-\frac{7}{3}x+\frac{4}{3}
Multiply -1 and -4 to get 4.
\frac{1}{6}x-\frac{1}{2}+\frac{4}{3}
Combine \frac{5}{2}x and -\frac{7}{3}x to get \frac{1}{6}x.
\frac{1}{6}x-\frac{3}{6}+\frac{8}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{1}{2} and \frac{4}{3} to fractions with denominator 6.
\frac{1}{6}x+\frac{-3+8}{6}
Since -\frac{3}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
\frac{1}{6}x+\frac{5}{6}
Add -3 and 8 to get 5.
\frac{1}{2}\times 5x+\frac{1}{2}\left(-1\right)-\frac{1}{3}\left(7x-4\right)
Use the distributive property to multiply \frac{1}{2} by 5x-1.
\frac{5}{2}x+\frac{1}{2}\left(-1\right)-\frac{1}{3}\left(7x-4\right)
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\frac{5}{2}x-\frac{1}{2}-\frac{1}{3}\left(7x-4\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{5}{2}x-\frac{1}{2}-\frac{1}{3}\times 7x-\frac{1}{3}\left(-4\right)
Use the distributive property to multiply -\frac{1}{3} by 7x-4.
\frac{5}{2}x-\frac{1}{2}+\frac{-7}{3}x-\frac{1}{3}\left(-4\right)
Express -\frac{1}{3}\times 7 as a single fraction.
\frac{5}{2}x-\frac{1}{2}-\frac{7}{3}x-\frac{1}{3}\left(-4\right)
Fraction \frac{-7}{3} can be rewritten as -\frac{7}{3} by extracting the negative sign.
\frac{5}{2}x-\frac{1}{2}-\frac{7}{3}x+\frac{-\left(-4\right)}{3}
Express -\frac{1}{3}\left(-4\right) as a single fraction.
\frac{5}{2}x-\frac{1}{2}-\frac{7}{3}x+\frac{4}{3}
Multiply -1 and -4 to get 4.
\frac{1}{6}x-\frac{1}{2}+\frac{4}{3}
Combine \frac{5}{2}x and -\frac{7}{3}x to get \frac{1}{6}x.
\frac{1}{6}x-\frac{3}{6}+\frac{8}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{1}{2} and \frac{4}{3} to fractions with denominator 6.
\frac{1}{6}x+\frac{-3+8}{6}
Since -\frac{3}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
\frac{1}{6}x+\frac{5}{6}
Add -3 and 8 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}