Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}\left(5\sqrt{3}-\frac{1}{2}\right)\times 9+3\left(5\sqrt{3}-\frac{3}{2}\right)
Calculate 3 to the power of 2 and get 9.
\frac{9}{2}\left(5\sqrt{3}-\frac{1}{2}\right)+3\left(5\sqrt{3}-\frac{3}{2}\right)
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
\frac{9}{2}\times 5\sqrt{3}+\frac{9}{2}\left(-\frac{1}{2}\right)+3\left(5\sqrt{3}-\frac{3}{2}\right)
Use the distributive property to multiply \frac{9}{2} by 5\sqrt{3}-\frac{1}{2}.
\frac{9\times 5}{2}\sqrt{3}+\frac{9}{2}\left(-\frac{1}{2}\right)+3\left(5\sqrt{3}-\frac{3}{2}\right)
Express \frac{9}{2}\times 5 as a single fraction.
\frac{45}{2}\sqrt{3}+\frac{9}{2}\left(-\frac{1}{2}\right)+3\left(5\sqrt{3}-\frac{3}{2}\right)
Multiply 9 and 5 to get 45.
\frac{45}{2}\sqrt{3}+\frac{9\left(-1\right)}{2\times 2}+3\left(5\sqrt{3}-\frac{3}{2}\right)
Multiply \frac{9}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{45}{2}\sqrt{3}+\frac{-9}{4}+3\left(5\sqrt{3}-\frac{3}{2}\right)
Do the multiplications in the fraction \frac{9\left(-1\right)}{2\times 2}.
\frac{45}{2}\sqrt{3}-\frac{9}{4}+3\left(5\sqrt{3}-\frac{3}{2}\right)
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
\frac{45}{2}\sqrt{3}-\frac{9}{4}+15\sqrt{3}+3\left(-\frac{3}{2}\right)
Use the distributive property to multiply 3 by 5\sqrt{3}-\frac{3}{2}.
\frac{45}{2}\sqrt{3}-\frac{9}{4}+15\sqrt{3}+\frac{3\left(-3\right)}{2}
Express 3\left(-\frac{3}{2}\right) as a single fraction.
\frac{45}{2}\sqrt{3}-\frac{9}{4}+15\sqrt{3}+\frac{-9}{2}
Multiply 3 and -3 to get -9.
\frac{45}{2}\sqrt{3}-\frac{9}{4}+15\sqrt{3}-\frac{9}{2}
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
\frac{75}{2}\sqrt{3}-\frac{9}{4}-\frac{9}{2}
Combine \frac{45}{2}\sqrt{3} and 15\sqrt{3} to get \frac{75}{2}\sqrt{3}.
\frac{75}{2}\sqrt{3}-\frac{9}{4}-\frac{18}{4}
Least common multiple of 4 and 2 is 4. Convert -\frac{9}{4} and \frac{9}{2} to fractions with denominator 4.
\frac{75}{2}\sqrt{3}+\frac{-9-18}{4}
Since -\frac{9}{4} and \frac{18}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{75}{2}\sqrt{3}-\frac{27}{4}
Subtract 18 from -9 to get -27.