Solve for y
y<4
Graph
Share
Copied to clipboard
\frac{1}{2}\times 4y+\frac{1}{2}\times 2-20<-\frac{1}{3}\left(9y-3\right)
Use the distributive property to multiply \frac{1}{2} by 4y+2.
\frac{4}{2}y+\frac{1}{2}\times 2-20<-\frac{1}{3}\left(9y-3\right)
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
2y+\frac{1}{2}\times 2-20<-\frac{1}{3}\left(9y-3\right)
Divide 4 by 2 to get 2.
2y+1-20<-\frac{1}{3}\left(9y-3\right)
Cancel out 2 and 2.
2y-19<-\frac{1}{3}\left(9y-3\right)
Subtract 20 from 1 to get -19.
2y-19<-\frac{1}{3}\times 9y-\frac{1}{3}\left(-3\right)
Use the distributive property to multiply -\frac{1}{3} by 9y-3.
2y-19<\frac{-9}{3}y-\frac{1}{3}\left(-3\right)
Express -\frac{1}{3}\times 9 as a single fraction.
2y-19<-3y-\frac{1}{3}\left(-3\right)
Divide -9 by 3 to get -3.
2y-19<-3y+\frac{-\left(-3\right)}{3}
Express -\frac{1}{3}\left(-3\right) as a single fraction.
2y-19<-3y+\frac{3}{3}
Multiply -1 and -3 to get 3.
2y-19<-3y+1
Divide 3 by 3 to get 1.
2y-19+3y<1
Add 3y to both sides.
5y-19<1
Combine 2y and 3y to get 5y.
5y<1+19
Add 19 to both sides.
5y<20
Add 1 and 19 to get 20.
y<\frac{20}{5}
Divide both sides by 5. Since 5 is positive, the inequality direction remains the same.
y<4
Divide 20 by 5 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}