Evaluate
3\left(y-2x\right)
Expand
3y-6x
Share
Copied to clipboard
\frac{1}{2}\times 4x+\frac{1}{2}\left(-2\right)y-\frac{2}{3}\left(9x-3y\right)-2\left(x-y\right)
Use the distributive property to multiply \frac{1}{2} by 4x-2y.
\frac{4}{2}x+\frac{1}{2}\left(-2\right)y-\frac{2}{3}\left(9x-3y\right)-2\left(x-y\right)
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
2x+\frac{1}{2}\left(-2\right)y-\frac{2}{3}\left(9x-3y\right)-2\left(x-y\right)
Divide 4 by 2 to get 2.
2x+\frac{-2}{2}y-\frac{2}{3}\left(9x-3y\right)-2\left(x-y\right)
Multiply \frac{1}{2} and -2 to get \frac{-2}{2}.
2x-y-\frac{2}{3}\left(9x-3y\right)-2\left(x-y\right)
Divide -2 by 2 to get -1.
2x-y-\frac{2}{3}\times 9x-\frac{2}{3}\left(-3\right)y-2\left(x-y\right)
Use the distributive property to multiply -\frac{2}{3} by 9x-3y.
2x-y+\frac{-2\times 9}{3}x-\frac{2}{3}\left(-3\right)y-2\left(x-y\right)
Express -\frac{2}{3}\times 9 as a single fraction.
2x-y+\frac{-18}{3}x-\frac{2}{3}\left(-3\right)y-2\left(x-y\right)
Multiply -2 and 9 to get -18.
2x-y-6x-\frac{2}{3}\left(-3\right)y-2\left(x-y\right)
Divide -18 by 3 to get -6.
2x-y-6x+\frac{-2\left(-3\right)}{3}y-2\left(x-y\right)
Express -\frac{2}{3}\left(-3\right) as a single fraction.
2x-y-6x+\frac{6}{3}y-2\left(x-y\right)
Multiply -2 and -3 to get 6.
2x-y-6x+2y-2\left(x-y\right)
Divide 6 by 3 to get 2.
-4x-y+2y-2\left(x-y\right)
Combine 2x and -6x to get -4x.
-4x+y-2\left(x-y\right)
Combine -y and 2y to get y.
-4x+y-2x+2y
Use the distributive property to multiply -2 by x-y.
-6x+y+2y
Combine -4x and -2x to get -6x.
-6x+3y
Combine y and 2y to get 3y.
\frac{1}{2}\times 4x+\frac{1}{2}\left(-2\right)y-\frac{2}{3}\left(9x-3y\right)-2\left(x-y\right)
Use the distributive property to multiply \frac{1}{2} by 4x-2y.
\frac{4}{2}x+\frac{1}{2}\left(-2\right)y-\frac{2}{3}\left(9x-3y\right)-2\left(x-y\right)
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
2x+\frac{1}{2}\left(-2\right)y-\frac{2}{3}\left(9x-3y\right)-2\left(x-y\right)
Divide 4 by 2 to get 2.
2x+\frac{-2}{2}y-\frac{2}{3}\left(9x-3y\right)-2\left(x-y\right)
Multiply \frac{1}{2} and -2 to get \frac{-2}{2}.
2x-y-\frac{2}{3}\left(9x-3y\right)-2\left(x-y\right)
Divide -2 by 2 to get -1.
2x-y-\frac{2}{3}\times 9x-\frac{2}{3}\left(-3\right)y-2\left(x-y\right)
Use the distributive property to multiply -\frac{2}{3} by 9x-3y.
2x-y+\frac{-2\times 9}{3}x-\frac{2}{3}\left(-3\right)y-2\left(x-y\right)
Express -\frac{2}{3}\times 9 as a single fraction.
2x-y+\frac{-18}{3}x-\frac{2}{3}\left(-3\right)y-2\left(x-y\right)
Multiply -2 and 9 to get -18.
2x-y-6x-\frac{2}{3}\left(-3\right)y-2\left(x-y\right)
Divide -18 by 3 to get -6.
2x-y-6x+\frac{-2\left(-3\right)}{3}y-2\left(x-y\right)
Express -\frac{2}{3}\left(-3\right) as a single fraction.
2x-y-6x+\frac{6}{3}y-2\left(x-y\right)
Multiply -2 and -3 to get 6.
2x-y-6x+2y-2\left(x-y\right)
Divide 6 by 3 to get 2.
-4x-y+2y-2\left(x-y\right)
Combine 2x and -6x to get -4x.
-4x+y-2\left(x-y\right)
Combine -y and 2y to get y.
-4x+y-2x+2y
Use the distributive property to multiply -2 by x-y.
-6x+y+2y
Combine -4x and -2x to get -6x.
-6x+3y
Combine y and 2y to get 3y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}